Fluid & Heat Blog Posts
Modeling Free Surfaces in COMSOL Multiphysics® with Moving Mesh
You can model free liquid surfaces that do not undergo topology changes using moving mesh functionality in the COMSOL® software. Here’s a thorough guide on how to do so.
Analyzing Multiphase Flow in an Airlift Loop Reactor Benchmark Model
This blog post features a benchmark model of an airlift loop reactor that validates the use of CFD simulation for analyzing multiphase flow.
Two Methods for Modeling Free Surfaces in COMSOL Multiphysics®
We take you through 2 methods for modeling free surfaces in the COMSOL® software: the level set and phase field methods. Learn how to use each method and their benefits.
How to Solve a Classic CFD Benchmark: The Lid-Driven Cavity Problem
We demonstrate how to solve a classic benchmark problem in the field of computational fluid dynamics, the lid-driven cavity problem, using the COMSOL® software.
Modeling Fluid-Structure Interaction in a Heart Valve
The average human heart beats 100,000 times per day, but what if the person has cardiac issues? Modeling fluid-structure interaction in a heart valve can help researchers develop new treatments.
Analyzing Wastewater Contaminant Removal in a Secondary Clarifier
1 potential way to ensure sustainable water access is by developing safe and efficient wastewater clarifiers. Engineers can use fluid flow simulation to develop optimized clarifier systems.
Common Pitfalls in Electrothermal Analysis
In the real world, electromagnetic heating often involves a nonlinear temperature. Learn some common pitfalls that occur during this type of electrothermal analysis and how to overcome them.
Analyzing a Supersonic Ejector with CFD Simulation
From food refrigeration in a local market to debris removal in the outer corners of space, ejectors have a wide range of uses. You can use the CFD Module to analyze a supersonic ejector design.