Latest Posts
Understanding the Drug Reaction Kinetics of Nerve Guides via Modeling
Ever had a pinched nerve? Nerve guides repair this type of damaged nerve cell tissue. To design safe and reliable nerve guides, we can use simulation to understand their drug reaction kinetics.
Electrode Balancing of a Lithium-Ion Battery with COMSOL®
Electrode balancing is an important consideration for battery cell engineers. Get an overview and mathematical framework of this phenomenon and learn how to analyze it in a lithium-ion battery.
Evaluating the Impact of Bearing Misalignment on Rotor Vibration
Bearings are found in devices ranging from MEMS and turbines to electric motors and even ships. How we account for a bearing’s misalignment (and the resulting rotor vibration) depends on its use.
How to Use Circular Ports in the RF Module
Degeneracy in circular ports leads to uncertainty in the mode field orientation. Not so with the Circular Port Reference Axis feature, which lets you define field orientations on port boundaries.
Speeding Up DNA Separation in a Microchannel via Simulation
DNA separation takes a long time using traditional methods. Now, researchers from the Missouri University of Science and Technology have found a faster way to get the job done.
Heat Transfer with Radiation in Participating Media and the Discrete Ordinates Method
Here’s your complete guide to the discrete ordinates method, quadrature sets, and how to model the interaction between radiation and a participating or absorbing medium.
Happy Birthday, Elsie Eaves
Elsie Eaves was one of the first female civil engineers and is celebrated as a role model for future engineers.
Is Meshing Run in Parallel in COMSOL Multiphysics®?
Meshing, an integral part of modeling in COMSOL Multiphysics®, can take up a lot of time and resources. Parallelized meshing speeds things up by distributing the meshing of domains on more cores.