
Comsol Problem Set

16 Oct 2013

Each of the following problems should be solved in a group of three students. All the problems must
be solved using COMSOL Multiphysics. General procedure

1. Write down the equations and boundary conditions.

2. Use suitable scales and make the equations dimensionless.

3. Solve the equations in dimensionless for by defining appropriate parameter values and by setting
some of them to unity.

1. Enzyme catalysed reactions A → B have a rate expression of the form, known as the Monod
kinetics:

rA = −
k CA

Km + CA
,

where k, Km are constants. One such reaction is carried out in a cylindrical region of radius R under
steady state conditions, with the surface concentration CA = CA0 at r = R.

Determine CA(r) of species A, for various values of the parameter Damköhler number Da ≡
k R2/(DCA0), and γ = Km/CA0. Compare the asymptotic expression with the numerical solution
for small values of Da.

2. Transient diffusion through permeable walls of a tube. A cylindrical tube (whose radius R is small
compared to its length L) with open ends is immersed and equilibriated in a fluid containing a
species at a concentration C0. At time t = 0 the outside (reservoir) concentration is suddenly
dropped to C1 < C0. The wall is permeable to the solute, so that the solute from inside the tube
diffuses out through the open ends as well as through the walls. The wall permeability (mass
transfer coefficient) is ks so that the wall flux is given by

jwall = ks (C −C1)

where C is the instantaneous concentration of the solute near the internal surface of the wall.

(a) Solve for the concentration C(r, t) inside the tube.

(b) Radially integrate the concentration

C̄(t) =
2
R2

R∫
0

dr C(r, t) r
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(c) At some locations far away from the ends of the tube (closer to the middle), plot the dimen-
sionless radially averaged concentration

ψ(t) ≡
C̄ − C̄1

C̄0 − C̄1

against time t. and compare it with the expression

ψ = e−2 ks t/R

for small times kst/R � 1.

3. A pipe of diameter 1 m carries crude oil (ρ = 0.8 g/cc, µ = 3 mPa s, k = 0.5 kJ/m h K, Cp = 2 kJ/kg
K) initially at 30◦C, over several hundred kilometers at a rate of 5 kg/s. After a certain extent,
it is taken underwater, where the surface temperature of the pipe suddenly drops to T = 4◦C.
Write down the dimensionless equations and boundary conditions. Setup and solve the problem
in dimensionless form, and solve for the temperature profile inside the pipe. Obtain a plot of the
radially averaged temperature profile as a function of the length of the pipe. From the final results
reinterpret the plots in dimensional form.

4. A roll of plate of thickness d is continuously moved at a velocity U through a section of length
K, which heats it up with a heat flux q0. Before the plates enters the heating section, it is at a
temperature T0; and after it passes the heating section it passes through an insulated section with
no loss of heat.
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Write down the equations in dimensionless form, and solve it numerically for the dimensionless
temperature

Θ(x) ≡
T (x) − T0

qL/k

Compare the temperature in the heated section with the expression

Θ =
1

Pe2

(
1 − ePe(ζ−λ)

)
+
ζ

Pe

where ζ ≡ x/d, and Pe = Ud
α

.

5. Nusselt Number in the Entrance Region (in temperature): Consider the Graetz problem where a
fully developed laminar velocity profile enters a pipe with a temperature T0. It is subjected to a
different wall temperature Tw starting at x = 0. Write a dimensionless governing equation for the
problem and solve for the temperature profile. Plot the local Nusselt Number, defined as

Nu ≡
hD
k

=
−∂Θ
∂n

Θr=0 − Θw

,
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as a function of the length of the pipe (in the entrance region: meaning where the temperature
inside has not reached the wall temperature). Let Nuh be the typical Nusselt number at half way
in the entrance region. Note down this value. Now change the Reynolds number Re, keeping Pe
fixed. Then vary Pe. At the end get a table of values of Nuh for Re= 0.1, 1, 10, 100. and Pe=

0.01, 0.1, 1, 10. Plot Nuh against Re for various fixed values of Pe, and Nuh against Pe, for various
fixed values of Re, in a log-log plot. Find out the slope and hence the constants C, a and b in the
expression

Nuh = C Rea Peb

6. Thermal entrance length : Consider the Graetz problem where a fully developed laminar velocity
profile enters a pipe of radius R with a temperature T0. It is subjected to a different wall temperature
Tw starting at x = 0. Write a dimensionless governing equation for the problem and solve for the
temperature profile. Find the typical length it takes for the temperature in the pipe to reach a steady
state value. Note down this length LT . Now change the Reynolds number Re, keeping Pe fixed.
Now change the Pe. At the end get a table of values of dimensionless length LT/R for Re= 0.1, 10
and Pe= 0.01, 0.1, 1, 10, 100. Plot the dimensionless length against Pe, for various fixed values of
Re, in a log-log plot. Find out the slope and hence the constants C, a, and b in the expression

LT

R
= C Rea Peb

7. Nusselt Number in the fully developed Region (in temperature): Consider the Graetz problem
where a fully developed laminar velocity profile enters a pipe with a temperature T0. It is subjected
to a different wall temperature Tw starting at x = 0. Write a dimensionless governing equation for
the problem and solve for the temperature profile. Plot the local Nusselt Number, defined as

Nu ≡
hD
k

=
−∂Θ
∂n

Θb − Θw

,

as a function of the length of the pipe. Here,

Θb =

R∫
0

dr u r Θ

R∫
0

dr u r

Let Nu∞ be the typical Nusselt number which is a constant for large length. Note down this value.
Now change the Reynolds number Re, keeping Pe fixed. Then vary Pe. At the end get a table of
values of Nuh for Re= 0.1, 100. and Pe= 0.01, 1, 100. What can you conclude from this table?

8. Nusselt Number in the Entrance Region (in temperature) specified heat flux: Consider the Graetz
problem where a fully developed laminar velocity profile enters a pipe with a temperature T0. It is
subjected to a constant heat flux qw from the wall. The dimensionless temperature is defined as

Θ =
T − T0

q R/k

Write a dimensionless governing equation for the problem and solve for the temperature profile.
Plot the local Nusselt Number, defined as

Nu ≡
hD
k

=
−∂Θ
∂n

Θr=0 − Θw

,
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as a function of the length of the pipe (in the entrance region: meaning where the temperature
inside has not reached the wall temperature). Let Nuh be the typical Nusselt number at half way
in the entrance region. Note down this value. Now change the Reynolds number Re, keeping Pe
fixed. Then vary Pe. At the end get a table of values of Nuh for Re= 0.1, 1, 10, 100. and Pe=

0.01, 0.1, 1, 10. Plot Nuh against Re for various fixed values of Pe, and Nuh against Pe, for various
fixed values of Re, in a log-log plot. Find out the slope and hence the constants C, a and b in the
expression

Nuh = C Rea Peb

9. Thermal entrance length (constant heat flux): Consider the Graetz problem where a fully developed
laminar velocity profile enters a pipe of radius R with a temperature T0. It is subjected to a constant
heat flux qw from the wall. The dimensionless temperature is defined as

Θ =
T − T0

q R/k

Write a dimensionless governing equation for the problem and solve for the temperature profile.
Find the typical length it takes for the temperature in the pipe to reach a steady state value. Note
down this length LT . Now change the Reynolds number Re, keeping Pe fixed. Now change the Pe.
At the end get a table of values of dimensionless length LT/R for Re= 0.1, 10 and Pe= 0.01, 0.1, 1,
10, 100. Plot the dimensionless length against Pe, for various fixed values of Re, in a log-log plot.
Find out the slope and hence the constants C, a, and b in the expression

LT

R
= C Rea Peb

10. Nusselt Number in the fully developed Region (in temperature) with specified heat flux: Consider
the Graetz problem where a fully developed laminar velocity profile enters a pipe with a tempera-
ture T0. It is subjected to a constant heat flux qw from the wall. The dimensionless temperature is
defined as

Θ =
T − T0

q R/k

Write a dimensionless governing equation for the problem and solve for the temperature profile.
Plot the local Nusselt Number, defined as

Nu ≡
hD
k

=
−∂Θ
∂n

Θb − Θw

,

as a function of the length of the pipe. Here,

Θb =

R∫
0

dr u r Θ

R∫
0

dr u r

Let Nu∞ be the typical Nusselt number which is a constant for large length. Note down this value.
Now change the Reynolds number Re, keeping Pe fixed. Then vary Pe. At the end get a table of
values of Nuh for Re= 0.1, 100. and Pe= 0.01, 1, 100. What can you conclude from this table?
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11. Consider a fully developed flow between two parallel plates with a constant heat flux at the plates.
The spacing between the plates is 2H. Find out the Nusselt number defined as

Nu ≡
2hH

k
=
−∂Θ
∂n

Θb − Θw

,

Here,

Θb =

H∫
−H

dy u Θ

H∫
−H

dy u

.

Plot the Nusselt number as a function of the dimensionless axial distance along the flow, for Re=

0.1, 100, and Pe= 0.1 and 100.

12. Consider a fully developed flow between two parallel plates with constant temperature at the walls.
The spacing between the plates is 2H. Find out the Nusselt number defined as

Nu ≡
2hH

k
=
−∂Θ
∂n

Θb − Θw

,

Here,

Θb =

H∫
−H

dy u Θ

H∫
−H

dy u

.

Plot the Nusselt number as a function of the dimensionless axial distance along the flow, for Re=

0.1, 100, and Pe= 0.1 and 100.

13. A liquid film of thickness H flows down a vertical impermeable solid surface (as shown below).
The flow is laminar and fully developed. The other side (left) of the film is in contact with air which
has a species A that is to be removed. Take the value of Peclet number Pe = 100. The species A
dissolves in the liquid and undergoes a irreversible first order reaction. The concentration of the
species at the air-liquid interface is CA0. Write the dimensionless concentration equations, and
solve for the concentration profile. Find the local Sherwood number Sh for the species, defined as

Sh ≡
kcD

k
=
−
∂XA
∂n

Xb − X0
,

as a function of the length of the pipe. Here,

Xb =

H∫
0

dy u X

H∫
0

dy u

.

Plot the values of Sh for Damkohler number Da= 0.01, 0.03, 0.1, 0.3.
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14. A liquid film of thickness H flows down a vertical impermeable solid surface (as shown below).
The flow is laminar and fully developed. The other side (left) of the film is in contact with air which
has a species A that is to be removed. Take the value of Peclet number Pe = 100. The species A
dissolves in the liquid and undergoes a irreversible first order reaction. The concentration of the
species at the air-liquid interface is CA0. Write the dimensionless concentration equations, and
solve for the concentration profile. Find the local Sherwood number Sh for the species, defined as

Sh ≡
kcD

k
=
−
∂XA
∂n

Xb − X0
,

as a function of the length of the pipe. Here,

Xb =

H∫
0

dy u X

H∫
0

dy u

.

Plot the values of Sh for Damkohler number Da= 10, 30, 100, 300.
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15. A liquid film of thickness H flows down a vertical impermeable solid surface (as shown below).
The flow is laminar and fully developed. The other side (left) of the film is in contact with air which
has a species A that is to be removed, which dissolves in the liquid (without any reaction). The
concentration of the species at the air-liquid interface is CA0. Write the dimensionless concentration
equations, and solve for the concentration profile. Find the local Sherwood number Sh for the
species, defined as

Sh ≡
kcD

k
=
−
∂XA
∂n

Xb − X0
,

as a function of the length of the pipe. Here,

Xb =

H∫
0

dy u X

H∫
0

dy u

.

Plot the values of Sh as a function of the dimensionless length in the developing region for Peclet
number Pe= 0.1, 1, 10.
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16. A liquid film of thickness H flows down a vertical impermeable solid surface (as shown below).
The flow is laminar and fully developed. The other side (left) of the film is in contact with air which
has a species A that is to be removed, which dissolves in the liquid (without any reaction). The
concentration of the species at the air-liquid interface is CA0. Write the dimensionless concentration
equations, and solve for the concentration profile. Find the local Sherwood number Sh for the
species, defined as

Sh ≡
kcD

k
=
−
∂XA
∂n

Xb − X0
,

as a function of the length of the pipe. Here,

Xb =

H∫
0

dy u X

H∫
0

dy u

.
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Plot the values of Sh as a function of the dimensionless length for Peclet number Pe= 0.1, 1, 10.
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17. Diffusion in a sphere with fast reaction. Consider a spherical catalyst pellet immersed in a fluid.
The concentration of a species in the fluid is constant CA0. Inside the pellet the species undergoes
a irreversible first order reaction. Set up the problem in a dimensionless form. Find the radial
concentration profile for various values of the Damkohler number Da= 10, 100.

18. Cross flow filtration. Consider a flow between two porous plates. In the x direction the flow is
driven by a pressure gradient G. In the vertical y direction there is flow with a constant velocity
V (inlet and outlet), thereby generating a cross-flow between the plates. Obtain the horizontal
velocity profiles for Re � 1 and Re � 1 (Take any two sample values in the low and high Re
limit). Compare profile with the exact solution to the equation

ρV
du
dy

= G + µ
d2u
dy2 .
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