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ABSTRACT 

Steady state channel flow of an electrically conductive liquid exposed to transverse 

magnetic and electric fields was analyzed using a finite element model in COMSOL 

Multiphysics software to determine the flow velocities and heat transfer characteristics 

of the flow.  The Lorentz force, velocity profile, and Nusselt number results were 

compared to the available exact solutions for this Hartmann flow problem.  A range of 

dimensionless Hartmann numbers in the laminar region was analyzed numerically as 

well as analytically, and the solutions were compared.   
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1. Introduction 

Magnetohydrodynamics (MHD) is a field that has many applications in metallurgy, 

microfluidic pumping, power generation in fusion and fission reactors, and cosmic 

studies.  The ability to control the flow of liquid metal and plasmas at high temperatures 

through magnetic fields without mechanical influence has novel applications.  Liquid 

metal flows can be manipulated with the magnetic field producing effects such as 

electromagnetic braking that is widely used in the continuous casting of steel, [1].  

Additionally, MHD has proven to be an efficient pumping method in microfluidic 

devices whose scale would typically require significant pressure gradients to achieve 

adequate flow rates, [2].  A specific type of MHD flow that has been studied extensively 

is flow in a channel between two parallel plates, known as Hartmann flow.  Analytical 

solutions have been obtained for the flow profile and heat transfer characteristics.  

Numerical solutions can be obtained through finite element analysis of the magnetic 

field and flow.  

 

For this project, the flow of a steady state incompressible liquid metal between parallel 

plates in a transverse magnetic field was analyzed.  The plates were assumed to be 

electrically insulated so as to not influence the magnetic field.  A pressure was applied to 

the inlet of the channel, and a Lorentz body force due to the magnetic field was 

calculated.  The Lorentz force altered the flow profile and consequently the heat transfer 

characteristics of the flow.  The change in heat transfer rate with respect to the change in 

flow profile due to the Lorentz force was analyzed. 
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2. Methodology 

2.1 Governing Equations 

The Maxwell and Navier-Stokes equations can be solved using the COMSOL 

Multiphysics analysis software and compared to theoretical solutions found in references 

[3], [4], and [5].  The problem that was analyzed is shown in Figure 1. The parallel 

plates were separated by a distance of 2y0.  A magnetic field was applied in the upward 

y-direction.  A differential pressure between the inlet and outlet of the plates was applied 

so that a flow profile that varies in the y-direction develops.  The pressure gradient in the 

z-direction was chosen as zero so that flow only occurred in the x-direction.  The 

magnetic field created an electromotive force on the fluid as it moved between the 

plates. 

Figure 1. Electric and Magnetic Fields Applied to a Pressure Driven Parallel Plate Flow 

 

 

 

 

 

The governing equations for this problem are derived from the Maxwell equations, 

Ohm’s law, and the Navier-Stokes equations.  The electromotive force needs to be 

applied as a body force in the Navier-Stokes equations so that the effect of the magnetic 

field on the fluid is included in the fluid flow solution.   

The Maxwell Equations were taken from [5]: 
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In order to derive an analytical solution from the above equations, certain assumptions 

must be made.  The constitutive equation, HB 0 , is assumed accurate for liquid 

metals and gases in most MHD problems, although it is not true in general for all types 

of flows.  This, along with the assumption that induced magnetic fields are much smaller 

than the externally applied magnetic field and that t /D  is negligible are the three 

major assumptions used to reduce the Maxwell equations to an MHD approximation 

form.  These assumptions are generally valid for most ordinary conductors at relative 

low velocities (V << speed of sound).  As shown in detail in Chapter 6 of [5], Maxwell’s 

equations can be reduced using these assumptions to: 

t




B
E  

JH   

0 J  

0 B  

))(( BVEJ   

These equations are coupled with the incompressible Navier-Stokes equations (Chapter 

4 of [5]) through the J  and B  fields which appear as a body force: 
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Where BJF b  

For the parallel plate problem, the left side of the equation equals zero because velocities 

in the y and z directions are zero, the velocities are time invariant, and the velocity 

profile does not change with x.  Likewise many terms on the right hand side are zero, 

and the equations simplify to: 
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Since we have chosen the flow (and pressure gradient) to be in the x-direction, the w, 

xJ , xE , and zp  / are zero and the above equations are reduced to the one equation 

shown below: 

)(0 002

2

uBEB
y

u

x

p
zf 









   

This is a representation of a simple one dimensional parallel plate flow with an applied 

body force dependent upon the applied electrical and magnetic fields.  This equation can 

be used to solve for the velocity profile between the plates by applying appropriate 

boundary conditions which are discussed in a later section. 

The general energy equation from [6] is solved in order to calculate the temperature 

distribution and heat flux in the fluid and through the boundaries: 
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These equations are rearranged in COMSOL assuming time invariance and no 

dissipation so that Conduction = Source – Convection: 

TcQTk p  V  

After COMSOL solved the above equation, the results were post-processed to solve for 

the convective heat transfer coefficient. 
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The convective heat transfer coefficient was used to determine the Nusselt Number. 
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2.2 Solution Method 

2.2.1 Lorentz Force Solution 

COMSOL Multiphysics was used to create a magnetostatics model of a channel with 

conductive fluid flow exposed to magnetic and electric fields.  The obtained solutions 

are compared to the analytical solutions for the Lorentz force and fluid velocity shown in 

the following section.  Mercury was selected as the conductive fluid due to its 

applicability to MHD (a conductive metal that is often used and studied because it is 

liquid at room temperatures). Fluid properties at 523.15K from [7] were used because 

the heat transfer was analyzed at temperatures close to this temperature.  These 

properties are presented in Table 1. 

Electrical 

Conductivity 

Dynamic 

Viscosity 
Density 

Thermal 

Conductivity 
Heat capacity 

1 x 10
6
 S/m 0.001 Pa*s 13026 kg/m

3
 13.07 W/(m*K) 136 J/(kg*K) 

Table 1. Applicable Fluid Properties of Mercury at 523K 

The flat plates were separated by a distance of 10 centimeters.  The length of the 

modeled plates was 6 meters, which is a sufficient condition to match the assumption 

used in the analytical solution, that the length is much greater than the distance between 

the plates. The model was meshed using the built in COMSOL meshing functions.  A 

fine mesh of 23552 triangular elements was used: 

 

Figure 2. Meshed Domain 

An electrical insulation boundary condition was applied to the border of the domain as 

this was assumed in the analytical solution.  The boundary conditions are shown in 

Figure 3. 
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Figure 3. Applied Magnetostatics Boundary Conditions 

Four magnetic fields of different strength were applied so that multiple flow profiles and 

Hartmann numbers could be compared to the baseline case (with no magnetic field 

applied).  Table 2 presents the different fields that were evaluated. 

Table 2. Conditions Used to Evaluate the Lorentz Force Contribution 

 Case 0 Case 1 Case 2 Case 3 Case 4 

Applied Magnetic Field (T) 0 0.002 0.004 0.006 0.01 

Hartmann Number 0 3.2 6.3 9.5 15.8 
 

The analyzed flow is called a Hartmann flow, and the dimensionless number that defines 

different Hartmann flows is known as the Hartmann Number (M).  The definition of the 

Hartmann number is fByM  /00 .   

The magnetic field was applied in COMSOL to the subdomain as an external distributed 

field in the positive y-direction.  This ensures that the magnetic field is in one direction, 

and is constant within the domain.  “Remnant flux density,” is the term in COMSOL that 

allows the user to directly apply this directional magnetic field, B ,  throughout the 

domain.  Alternatively, the magnetic field could have been applied as boundary 

conditions, however applying the field in the subdomain allowed for the electrical 

insulation boundary conditions to be applied instead.   

Results of cases with electric fields were evaluated but not included in this project 

because the Hartmann number is unaffected.  The electric field acts similarly to a back-

pressure, therefore the profile of the flow remains the same. 

The magnetostatics and hydrodynamic solutions were solved for separately, and 

iteratively.  Figure 4 shows the iterative solution method that was used.   

 

n x H = 0 n x H = 0 

n x H = 0 

n x H = 0 
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Figure 4. Iterative Solution Method 

A parabolic flow solution was applied as an initial guess, so that an initial Lorentz force 

could be solved for and input in the hydrodynamics model.  Once the velocity, insulation 

boundary conditions, and magnetic fields were applied a magnetostatics solution was 

obtained in COMSOL.  COMSOL allows the same model and mesh to be used for both 

the hydrodynamic and magnetostatics solvers so that variables can be passed easily.  The 

Lorentz force solution was applied to the hydrodynamic model in COMSOL and once 

the appropriated conditions were applied (discussed further in the next section) a 

hydrodynamic solution was obtained.  The new calculated velocities were then applied 

to the magnetostatics model and a new Lorentz force was calculated.  This process was 

repeated several times for each case until the change in velocities between iterations was 

insignificant.  

2.2.2 Hydrodynamic Flow Solution 

The calculated Lorentz force solution is used as an input to the Navier-Stokes equation.  

The iterative solution method described in the above section was used because 

simultaneous solution of the hydrodynamic and magnetic equations can cause instability 

without a close initial guess, especially at the inlet and outlet boundaries.  Low pressure 

inlet conditions with a 0 pressure outlet condition were applied to the 0.1 meter high by 

6 meter fluid domain.  This ensures low velocities so that end effects and entrance 

lengths do not dominate the solution.  It also ensures that the flow is sufficiently 

developed within the analyzed region.  The boundary conditions are illustrated in Figure 

5. 

 

 

 

Figure 5. Applied Fluid Dynamics Boundary Conditions 

P = Pinlet P = 0 

v = 0 

v = 0 



 

 8 

No slip wall conditions were applied to the upper and lower plates.  The calculated 

Lorentz force from the magnetostatics solution was applied as a body force to the fluid 

domain.  Different pressures were applied to each case so that the volumetric flow rate 

between the plates differed by less than 1% between cases.  Increased pressures were 

applied at higher Hartmann numbers to achieve the same flow rate because the Lorentz 

force acts against the flow.  The entrance region affects the linearity of the pressure 

drop; therefore trial and error was used to get the desired pressure drop per meter in the 

fully developed region.  At higher Hartmann numbers the entrance length is reduced, 

therefore the analytical equations were used to estimate the required inlet pressure for 

cases 3 and 4.  The following inlet pressures were used: 

Table 3. Conditions Used to Evaluate the Fluid Velocities 

 Case 0 Case 1 Case 2 Case 3 Case 4 

Applied Inlet Pressure (Pa) 0.006 0.023 0.071 0.149 0.395 

Hartmann Number 0 3.2 6.3 9.5 15.8 

 

The velocities that result from these pressures ensured that the flow is laminar.  Figure 6, 

taken from [8], shows that as the Hartmann number increases, the flow becomes more 

stable and requires a much higher Reynolds number to transition to turbulent flow.  For 

pressure driven parallel plate flow, transition to turbulent flow is expected to occur at a 

Reynolds number of 2000, [9].  The Reynolds number for Case 0 is 600 and less for the 

other cases, therefore laminar flow was present in all cases. 
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Figure 6. Transition to Turbulence in Hartmann Flows [9] 

Once the boundary conditions and Lorentz forces were applied to the model, the 

hydrodynamic problem was solved.  As described above, the magnetostatics and 

hydrodynamic solution were solved iteratively until new solutions stopped changing 

significantly.  

2.2.3 Heat Transfer Solution 

The forced convection heat transfer solution was obtained by applying the boundary 

conditions specified in Figure 7 to the geometries in COMSOL. 

 

 

 

 

Figure 7. Applied Boundary Conditions for the Heat Transfer Analysis 

The fully developed analytical fluid flow solutions were used in the heat transfer 

analysis so that flow entrance effects would not affect the solution.  A shorter geometry, 

0.1 meter high by 2 meter long fluid domain, was used for the heat transfer solution 

because the domain quickly reached the wall temperature.  The walls were held at a 

Constant Ts < Ti 

Constant Ts < Ti 

 
Flow Solution 

Convective 

Heat Flux 
Ti = 573K 
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constant temperature (323.15 K) and the fluid entered at a constant inlet temperature 

(573.15 K).  A convective heat flux boundary condition was applied to the outlet.  An 

additional domain was used for the region from 0 meters to 0.2 meters so that the 

temperature profile can be integrated in COMSOL at 0.2 meters and a bulk temperature 

could be determined. 

The solutions for each case were compared to determine how the flow profile affects the 

heat transfer between parallel plates.  The Nusselt number was used to determine how 

the Hartmann number affected the heat transfer rate. 

The heating that occurs when the magnetic field is applied to the flow was not included 

in this analysis because the effect of flow profile on the heat transfer was desired.  

Reference [3] describes a steady state solution where this heating is set equal to the heat 

lost through the walls. 

2.3 Expected Results 

The Lorentz force was expected to match the result derived in [5] BJF b , which for 

this specific problem simplifies to )(F 00b uBEB z   .  When no slip boundary 

conditions are applied at 0yy  , the velocity profile (assuming a constant pressure 

gradient, magnetic, and electric field) can be obtained: 





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






















 1

)cosh(

)/cosh(1 0

0

2

0

M

yMy
E

y

M

x

P

M

y
u z

ff 




 

M, Hartmann Number  fByM  /00  

This is the profile that is expected in the fully developed region of the flow.  For 

increased Hartmann numbers, the flow profile gradually becomes flatter, with steep 

gradients close to the wall in order to satisfy the no-slip boundary condition.   

Increased pressure gradients or increased electric fields that do not affect the applied 

magnetic field do not change the normalized velocity profile; they only change 

maximum velocity at the center of the channel.  Increased pressure gradients are 

required to keep the maximum velocities similar when analyzing different Hartmann 

numbers because the Lorentz force caused by the magnetic field will work against the 

motion of the fluid in this analysis,. 
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It can be expected that the heat transfer for the higher Hartmann number flows of the 

same volumetric flow rate will be increased due to the increase flow near the wall 

boundary.  Increased convection would be expected because the increase in velocity is 

near the boundary.  The point of greatest heat flux at the inlet is at the walls (since the 

wall temperature is held constant.)  The dimensionless Nusselt number is a common 

parameter used to characterize the convective heat transfer for a specific type of flow.  

As described in [10], for the baseline condition with no magnetic field (Case 0) the 

expected Nusselt number is 7.54.  Laminar fully developed flow in a rectangular cross 

section pipe of infinite width is assumed for this theoretical result.  Case 0 is used to 

confirm accuracy of solution and conformance to theory.  The other cases were 

compared to this result to examine the change in heat transfer rate.  Nusselt numbers will 

be calculated for each case. 
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3. Results and Discussion 

3.1 Lorentz Force Solution 

The magnetostatics finite element modeling module of COMSOL Multiphysics was used 

to determine the Lorentz force for a Hartmann flow described by the boundary 

conditions shown in Figure 3. A 2-dimensional 0.1 meter high, 6 meter long domain was 

analyzed with the applied magnetic fields and hydrodynamic solutions described in 

section 2.2 and repeated in the Table 4. 

Table 4. Conditions Used to Evaluate the Magnetic and Hydrodynamic Models 

 Case 0 Case 1 Case 2 Case 3 Case 4 

Applied Inlet Pressure (Pa) 0.006 0.023 0.071 0.149 0.395 

Applied Magnetic Field (T) 0 0.002 0.004 0.006 0.01 

Hartmann Number 0 3.2 6.3 9.5 15.8 

 

The hydrodynamic and magnetic solutions were solved iteratively since the velocity 

affects the magnetic solution, and the Lorentz force affects the velocities.  As shown in 

Figure 8, with an increasing Hartmann number, the Lorentz force increases and matches 

the expected results.  The lines represent the exact solution described in section 2.3.  The 

dots are the results of the COMSOL model. 
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Figure 8. Calculated and Exact Lorentz Force Solutions 

The body force is divided by the length of the channel to determine the equivalent back 

pressure that is being applied to the fluid.  Toward the middle of the channel, the force 

almost negates the applied pressure force, which results in very low velocities in the 

channel when compared to a solution with no applied magnetic field.  Figure 8 confirms 

that the analytical Lorentz body force )( 00 uBEB z    matches the calculated results.  

Therefore this term can be directly used in the fluid flow solution so that the magnetic 

solution does not need to be recalculated or solved iteratively.  However, for more 

complicated flows with non-uniform fields such a simple term may not be readily 

available or determined, therefore the iterative method used in this project is a more 

powerful solution method for more general, realistic flows.   
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3.2 Fluid Flow Solution 

The calculated velocity profiles for a pressure driven flow for the cases described in 

Table 4 are shown in Figure 9.  These profiles have approximately the same volumetric 

flow rate (within 1%). 

 

Figure 9. Analytical and Computed Velocity Profiles for Various Hartmann Numbers 

As the magnetic field was increased, the Lorentz force also increased, which reduces the 

velocity throughout the channel.  The Lorentz force is a function of velocity, therefore 

the normally parabolic flow receives a greater counter-flow force at the highest velocity 

points (center of the channel).  As the magnitude of the magnetic field increases, the 

force in the center increases until the flow becomes almost constant through the channel 

(except very close to the walls so the solution satisfies the no slip boundary condition).  

Contour plots of the pressure field combined with an arrow plot of the velocity field for 

each of the analyzed cases are shown in Appendix A.  The velocities normalized to the 

maximum velocity are shown in Figure 10. 
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Figure 10. Normalized Computed Velocity Profiles for Various Hartmann Numbers 

As shown in Figure 10, the effects of the magnetic field become more pronounced as the 

field increases.  Even at the moderate Hartmann numbers used in this project, the 

velocity profile is nearly flat.  Hartmann numbers for many industrial and laboratory 

applications can be large (M = 10 – 10000), [11].  For these flows the velocity profile is 

practically constant between the plates.  

3.3 Heat Transfer Solution 

The heat transfer analysis described in Section 2.2.3 was performed.  As expected, the 

heat transfer was enhanced at higher Hartmann numbers with volumetric flow rate held 

constant.  A contour plot of the fluid temperatures for the baseline Case 0 with no 

applied magnetic field is shown in Figure 11. 



 

 16 

 

Figure 11. Surface Temperature over the Analyzed Fluid Domain for M=0 

The temperature contour plots for cases 1-4 were similar to the baseline case.  The heat 

fluxes through the wall for each case are plotted together in Figure 12.   

 

Figure 12. Calculated Heat Flux for Various Hartmann Numbers  
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As shown in the Figure, the heat flux is slightly enhanced with increasing Hartmann 

Number.  Since the heat transfer is enhanced, the temperatures in the fluid domain more 

quickly reach the wall temperature.  A crossover point at approximately 0.08 meters is 

due to the lower difference in bulk temperature and wall temperature.  This is shown 

more clearly in a normalized plot, Figure 13. 

 

Figure 13. Heat Flux Normalized to Case 0 

Figure 13 shows the heat fluxes normalized to the baseline Case 0.  Ignoring the end 

effect, the heat flux amplification is a maximum at the beginning of the domain, where 

temperatures between cases are almost identical due to the inlet temperature boundary 

condition.  Due to the larger heat flux, Cases 1-4 cool faster than Case 0.  At ≈ 0.08 

meters the Hartmann flow cases have cooled to a point where the decreased temperature 

difference has counteracted the increased heat transfer coefficient, and the overall heat 

flux is equivalent to the baseline case.  The overall heat transfer throughout the domain, 

however, has been greater.  

The heat flux and temperatures were exported from the COMSOL program and post-

processed in Microsoft Excel to determine the heat transfer coefficient and Nusselt 

number.  Applicable heat transfer parameters for the solution at x = 0.2 meters (which is 
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at the edge of the thermal entry length region) are shown in Table 5.  This short distance 

was chosen because the fluid domain quickly reaches the wall temperature due to the 

relatively high heat transfer coefficient. 

Table 5. Post-processed Heat Transfer Results 

    Case 0 Case 1 Case 2 Case 3 Case 4 

Surface Temperature Tinf (K) 373.15 373.15 373.15 373.15 373.15 

Heat Flux q'' (W/m2) 17415 16526 15444 14787 14117 

Bulk Temperature Tbulk (K) 408.31 404.99 401.47 399.60 397.89 

Heat Transfer Coefficient h (W/m2*K) 495.3 519.0 545.3 559.1 570.6 

Nusselt Number Nu 7.579 7.941 8.344 8.555 8.731 

 

The Nusselt number exact solution for a parabolic pressure driven channel flow with a 

constant wall temperature is Nu = 7.54, [10].  Table 8-9 from [6] shows that a slightly 

increased Nusselt number is expected in this region of flow.  The dimensionless entry 

length (x+) is 0.033 for Case 0.  As shown in Table 6, the calculated Nusselt number is 

reasonable for the baseline case. 

Table 6. Nusselt Numbers for Parallel Plate Flow Versus Entry Length 

 X+ = 2*(x/Dh)/RePr Nu 

0.01 8.52 

0.02 7.75 

0.05 7.55 

0.1 7.55 

0.2 7.55 

 

The computed Nusselt number for Case 0 is very close to the exact Nusselt number 

which gives confidence that the model is accurately predicting the temperature 

distribution and heat flux in the fluid. 
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4. Conclusions 

4.1 Applicability of COMSOL to MHD Flows 

The results obtained using COMSOL to model a pressure driven parallel plate flow 

exposed to an external magnetic field were compared to theory and analytical solutions.  

Convergence issues were encountered when trying to solve both the magnetic and 

hydrodynamic solutions simultaneously, however when solved iteratively the solutions 

converged easily.  It was discovered that, entrance and end effects can have large 

influences on both the convergence and the accuracy of the solution.  A graph of the 

pressure on the centerline of the channel for the baseline case with no magnetic field 

shows that the pressure loss in the entrance region is not linear. 

 

Figure 14. Pressure over the Analyzed Fluid Domain 

The purpose of this project was to analyze fully developed flow; therefore the inlet 

pressure was adjusted until the desired pressure drop in the fully developed region was 

Entrance region 
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achieved.  According to [6], the entrance length for parallel plate flow is calculated to be 

0.05*Re*D, which for the baseline flow, Case 0, would be approximately 3 meters.  The 

measured pressure gradient in the 4 to 6 meter region was therefore used in the exact 

solutions.  The velocities and resulting Reynolds number in this analysis were chosen to 

be small so that the entrance length of the flow could be kept small.  This resulted in 

some of the analyzed region being fully developed.  In the fully developed region, the 

COMSOL results matched the analytical solutions for the Lorentz force and velocity 

profile.  Given the accuracy of the results obtained from this analysis, it is expected that 

other Hartmann flows modeled in COMSOL for different conductive fluids would yield 

accurate results given an appropriate domain size and mesh resolution.  Also, it is 

expected that more complicated MHD flows could be analyzed in COMSOL by using 

the iterative method that was used to evaluate the flows in this report. 

4.2 Heat Transfer in Hartmann Flows 

As expected, slightly enhanced heat transfer was obtained at higher Hartmann numbers.  

This enhancement may be beneficial in flows where magnetic fields are used for braking 

because Joule heating can cause the temperature of the fluid to rise rapidly.  Typically 

the conductive heat transfer coefficient for liquid metal flows is large, therefore the 

slight enhancement in heat transfer may be insignificant for practical applications.  

However for temperature critical applications, the change in Nusselt number for 

different Hartmann numbers needs to be taken into consideration. 



 

 21 

5. References 

[1]  Egbert Zienicke, Thomas Boeck, and Dmitry Krasnov, Transition to Turbulence in 

Magnetohydrodynamic Channel Flow of Liquid Metals, NIC Series, Vol. 32 (2006), 

p. 341-348. 

[2] Asuncion V. Lemoff and Abraham P. Lee, An AC Magnetohydrodynamic 

Micropump, Sensors and Actuators B: Chemical Vol. 63, Issue 3 (2000), p. 178-

185. 

[3] Elmārs Blūms, Yu. A. Mikhailov and R. Ozols, Heat and Mass Transfer in MHD 

Flows, World Scientific Publishing, 1987. 

[4] R. A. Alpher, Heat Transfer in Magnetohydrodynamic Flow Between Parallel 

Plates, International Journal of Heat and Mass Transfer Vol. 3 Issue 2 (1961), p. 

108-112. 

[5] W. F. Hughes and F. J. Young, The Electromagnetodynamics of Fluids, John Wiley 

& Sons, New York:1966. 

[6] William Kays et. all, Convective Heat and Mass Transfer Fourth Edition, McGraw-

Hill, Boston: 2005. 

[7] Mercury- Properties, The Engineering ToolBox, 

http://www.engineeringtoolbox.com/mercury-d_1002.html 

[8] S. Smolentsev and R. Moreau, Modeling quasi-two-dimensional turbulence in MHD 

duct flows, Center for Turbulence Research Proceedings of the Summer Program 

2006 p. 419-430. 

[9] Frank M. White, Viscous Fluid Flow Third Edition, MaGraw-Hill, New York: 2006. 

[10] Frank P. Incropera et. all, Fundamentals of Heat and Mass Transfer 6
th

 Edition, John 

Wiley & Sons, 2007. 

[11] J. C. R. Hunt and R. Moreau, Liquid-metal magnetohydrodynamics with strong 

magnetic fields: a report on Euromech 70, Journal of Fluid Mechanics, Vol. 78 

(1976), p. 261-288. 

http://www.sciencedirect.com.colelib-prxy.ewp.rpi.edu/science/journal/00179310


 

 22 

6. Appendix A: Additional Graphs of Solutions 
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Contour plots showing the pressure and arrow plots showing the velocity profile for 

cases 0-4 are shown below.  The change in velocity to a flatter profile can be seen.  

Additionally, the entry length as the Hartmann number increases gets shorter. 

 

Case 0 Pressure and Velocity Profile Results (M=0) 

 

Case 1 Pressure and Velocity Profile Results (M=3.2) 
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Case 2 Pressure and Velocity Profile Results (M=6.3) 

 

Case 3 Pressure and Velocity Profile Results (M=9.5) 
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Case 4 Pressure and Velocity Profile Results (M=15.8) 


