

## ALE Models solved with FEMLAB 3

## ALE Models

## Introduction

To handle moving boundaries in some fluid flow problems you can apply the arbitrary Lagrangian-Eulerian (ALE) formulation. With this method in FEMLAB, field variables represent mesh displacement and mesh velocity. FEMLAB solves the equations on the original mesh but adjusts the equations to account for the mesh movements. The method covers situations in which the topology of the geometry does not change during the simulation and a suitable PDE for the mesh velocity exists.

This example considers two cases. In the first case, the mesh velocity is prescribed. In the second case, the mesh velocity varies freely.

## Model Definition

Consider a mapping from the original domain $\Omega$ to the deformed domain $\bar{\Omega}$ defined by

$$
x(X, Y, t), y(X, Y, t), X, Y \varepsilon \Omega, x, y \varepsilon \bar{\Omega}, t \varepsilon R^{+}
$$

with Jacobian inverse

$$
\left[\begin{array}{cc}
I_{X x} & I_{X y} \\
I_{Y x} & I_{Y y}
\end{array}\right]=\frac{1}{D}\left[\begin{array}{cc}
y_{Y} & -x_{Y} \\
-y_{X} & x_{X}
\end{array}\right] \text {, where } D=x_{X} y_{Y}-x_{Y} y_{X}
$$

The Navier-Stokes equations can be written as

$$
\begin{aligned}
& \int_{\bar{\Omega}}\left(\tilde{u}_{x}\left(2 \eta u_{x}-p\right)+\tilde{v}_{y}\left(2 \eta v_{y}-p\right)+\left(\hat{v}_{x}+\hat{u}_{y}\right) \eta\left(u_{y}+v_{x}\right)+\right. \\
& \hat{u}\left(\left(u-\psi_{x}\right) u_{x}+\left(v-\psi_{y}\right) u_{y}\right)+\hat{v}\left(\left(u-\psi_{x}\right) v_{x}+\left(v-\psi_{y}\right) v_{y}\right)+ \\
& \left.-\hat{p}\left(u_{x}+v_{y}\right)+\rho \hat{u} \frac{\partial u}{\partial t}+\rho \hat{v} \frac{\partial v}{\partial t}-\hat{u} f_{x}-\hat{v} f_{y}\right) \mathrm{d} \Omega=0
\end{aligned}
$$

in the moving coordinate system, where $\psi=\left(\psi_{x}, \psi_{y}\right)$ is the mesh velocity [2] and denotes a test function. The deformed velocity derivatives can be expressed using the original velocity derivatives

$$
\left[\begin{array}{ll}
u_{x} & u_{y} \\
v_{x} & v_{y}
\end{array}\right]=\left[\begin{array}{ll}
u_{X} I_{X x}+u_{Y} I_{Y x} & u_{X} I_{X y}+u_{Y} I_{Y y} \\
v_{X} I_{X x}+v_{Y} I_{Y x} & v_{X} I_{X y}+v_{Y} I_{Y y}
\end{array}\right]
$$

The integration of the weak equations on the original domain

$$
\begin{aligned}
& \int_{\Omega} D\left(\left(\hat{u}_{X} I_{X x}+\hat{u}_{Y} I_{Y x}\right)\left(2 \eta u_{x}-p\right)+\left(\hat{v}_{X} I_{X y}+\hat{v}_{Y} I_{Y y}\right)\left(2 \eta v_{y}-p\right)+\right. \\
& \left(\hat{u}_{X} I_{X y}+\hat{u}_{Y} I_{Y y}+\hat{v}_{X} I_{X x}+\hat{v}_{Y} I_{Y x}\right) \eta\left(u_{y}+v_{x}\right)+ \\
& \hat{u}\left(\left(u-\psi_{x}\right) u_{x}+\left(v-\psi_{y}\right) u_{y}\right)+\hat{v}\left(\left(u-\psi_{x}\right) v_{x}+\left(v-\psi_{y}\right) v_{y}\right)+ \\
& \left.-\hat{p}\left(u_{x}+v_{y}\right)+\rho \hat{u} \frac{\partial u}{\partial t}+\rho \hat{v} \frac{\partial v}{\partial t}-\hat{u} f_{x}-\hat{v} f_{y}\right) \mathrm{d} \Omega=0
\end{aligned}
$$

derives a set of equations that can be solved on the fixed mesh. Note that referring to $\hat{u}_{x}$ here would seem logical but it introduces extra terms that complicate the equations for the mesh discussed below.

## Prescribed Moving Boundaries

To model a prescribed moving boundary and solve for the mesh velocity using a Poisson's equation in the moving coordinate system, use the following equations:

$$
\begin{aligned}
& \int_{\Omega} D\left(\left(\hat{\psi}_{x X} I_{X x}+\hat{\psi}_{x Y} I_{Y x}\right) \psi_{x x}+\left(\hat{\psi}_{x X} I_{X y}+\hat{\psi}_{x Y} I_{Y y}\right) \psi_{x y}\right) \mathrm{d} \Omega=0 \\
& \int_{\Omega} D\left(\left(\hat{\psi}_{y X} I_{X x}+\hat{\psi}_{y Y} I_{Y x}\right) \psi_{y x}+\left(\hat{\psi}_{y X} I_{X y}+\hat{\psi}_{y Y} I_{Y y}\right) \psi_{y y}\right) \mathrm{d} \Omega=0 \\
& \frac{\partial x}{\partial t}=\psi_{x} \\
& \frac{\partial y}{\partial t}=\psi_{y}
\end{aligned}
$$

with initial condition $x=X, y=Y$. Solving for the mesh movements in the moving coordinate systems makes the problem nonlinear, but often allows for larger mesh movements. Also provide a velocity field for the boundary

$$
\begin{aligned}
\psi_{x} & =U(t) \\
\psi_{y} & =V(t) \quad \text { on } \partial \bar{\Omega} . \\
u & =\psi_{x} \\
v & =\psi_{y}
\end{aligned}
$$

The pressure must be fixed at one point for the problem to be well-defined because there is no force on the boundary.

## Free Moving Boundaries

To model a free moving boundary and solve for the mesh velocity using a Poisson's equation in the fixed coordinate system, refer to the equations

$$
\begin{aligned}
& \int_{\Omega}\left(\hat{\psi}_{x X} \psi_{x X}+\hat{\psi}_{x Y} \psi_{x Y}\right) \mathrm{d} \Omega=0 \\
& \int_{\Omega}\left(\hat{\psi}_{y X} \psi_{y X}+\hat{\psi}_{y Y} \psi_{y Y}\right) \mathrm{d} \Omega=0 \\
& \frac{\partial x}{\partial t}=\psi_{x} \\
& \frac{\partial y}{\partial t}=\psi_{y}
\end{aligned}
$$

with initial condition $x=X, y=Y$. Solving for the mesh movement in the fixed coordinate system simplifies the equations for the mesh but allows for smaller mesh movements.

For the boundary, model the simplest possible case (no wall, no surface tension) of free boundaries by adding additional boundary conditions and an equation for the velocities of the free boundary.

$$
\begin{aligned}
& \psi_{x}=u \\
& \psi_{y}=v
\end{aligned}
$$

These constraints are implemented in weak form using Lagrange multipliers $l_{x}$ and $l_{y}$. The corresponding weak terms $\Psi_{x} l_{x}$ and $\Psi_{y} l_{y}$ are added to the weak form of the PDE for the mesh movement. This means that the flow moves freely at the free boundary and takes care of ensuring that the constraint only affects the mesh
movement. The reason to use non-ideal weak constraints here is to avoid constraint forces in the Navier-Stokes equations.

## Modeling in FEMLAB

## PRESCRIBED MOVING BOUNDARIES

Consider a circular domain (radius 1 ) with a moving smaller circular domain (radius 0.2 ) subtracted. The smaller circular domain is moving according to the following pattern:

$$
\begin{aligned}
U & =A \frac{2}{\pi}\left(-\operatorname{atan}(t) \sin (t)+\frac{1}{1+t^{2}} \cos (t)\right) \\
V & =A \frac{2}{\pi}\left(\operatorname{atan}(t) \cos (t)+\frac{1}{1+t^{2}} \sin (t)\right)
\end{aligned}
$$

Because the mesh movement does not affect the fluid flow, you can solve for the mesh movement first and then for the fluid field. The constant $A=0.2$. The formulas come from

$$
\begin{aligned}
& x=r(t) \cos (t) \\
& y=r(t) \sin (t)
\end{aligned}
$$

where $r(t)=A \frac{2}{\pi} \operatorname{atan}(t)$. The force affecting the fluid is $f_{x}=0, f_{y}=0$.

## FREE MOVING BOUNDARIES

Model a circular domain (radius 0.7 ) with a fluid about it. A "gravity-like force" keeps the fluid on top of the circular domain $\left(f_{x}=-10 x, f_{y}=-10 y\right)$. The motion of the fluid is triggered by an initial velocity.

## Results

## PRESCRIBED MOVING BOUNDARIES

The interior domain is moving outward in a spiral-like motion, approaching a circular movement. You can verify the steady-state solution by solving a stationary Navier-Stokes problem in a rotating coordinate system.


## FREE MOVING BOUNDARIES

The plot shows the free fluid surface after 2.1 time units. Notice that the pressure appears to depend mostly on the depth of the fluid. This simplified model avoids the need to represent the interaction between the fluid and walls. While often you also
need to include a surface tension model, this example runs without defining surface tension impacts.


## References

[1] J. Donea, A. Huerta, J.-Ph. Ponthot, A. Rodrígues-Ferran, "Arbitrary Langrangian-Eulerian Methods", Encyclopedia of Computational Mechanics, Edited by Erwin Stein, René de Borst and Thomas J.R. Hughes, John Wiley \& Sons, 2004.
[2] M.A. Fernández, M. Moubachir, "Sensitivity Analysis for an Incompressible Aeroelastic Systems", Mathematical Models and Methods in Applied Sciences, 12, no 8, 2002.

Model Library path: FEMLAB/Fluid_Dynamics/ale_prescribed

## Modeling Using the Graphical User Interface

## MODEL NAVIGATOR

I In the Model Navigator, select 2D in the Space dimension list.
2 In the PDE Modes folder, select Weak Form, Subdomain.
3 Type psix psiy xy in the Dependent variables edit field.
4 Type mesh in the Application mode name edit field.
5 Click the Multiphysics button and then the Add Geometry button.

6 Keep the 2D space dimension and enter $X Y Z$ as independent variables.
7 Click OK.
8 Click Add.
9 In the PDE Modes folder, select Weak Form, Subdomain.
10 Type $u v p$ in the Dependent variables edit field.
II Type ns in the Application mode name edit field.
12 Click Add.
I3 Click OK.

OPTIONS AND SETTINGS
I From the Options menu, choose Constants.
2 In the Constants dialog box, define the following constants with names and expressions:

| NAME | EXPRESSION |
| :--- | :--- |
| nu | 0.001 |
| A | 0.2 |

3 Click OK.

GEOMETRY MODELING
I Shift-click on the Ellipse/Circle (Centered) button in the Draw toolbar. Enter radius 1 , and keep the default origin.

2 Shift-click on the Ellipse/Circle (Centered) button in the Draw toolbar. Enter radius 0.2 , and keep the default origin.

3 Select both domains by pressing Ctrl+A and then click the Difference button.

PHYSICS SETTINGS
Expression Variables
I On the Options menu, point to Expressions and then click Subdomain Expressions.
2 Enter the following expression variables for subdomain l:

| sUbDOMAIN | 1 |
| :--- | :--- |
| $d J$ | $x X^{*} y Y-x Y^{*} y X$ |
| i $J X x$ | $y Y / d J$ |
| $i J X y$ | $-x Y / d J$ |


| SUBDOMAIN | 1 |
| :---: | :---: |
| iJYx | -yX/dJ |
| iJYy | xX/dJ |
| ux | $u X * i J X x+u Y * i J Y x$ |
| uy | $u X * i J X y+u Y * i J Y y$ |
| vx | vX*iJXx+vY*iJYx |
| vy | vX*iJXy+vY*iJYy |
| U | $\mathrm{A} /(\mathrm{pi} / 2) *\left(-\operatorname{atan}(\mathrm{t}) * \sin (\mathrm{t})+1 /\left(1+\mathrm{t}^{\wedge} 2\right) * \cos (\mathrm{t})\right.$ ) |
| V | $\mathrm{A} /(\mathrm{pi} / 2) *\left(\tan (\mathrm{t}) * \cos (\mathrm{t})+1 /\left(1+\mathrm{t}^{\wedge} 2\right) * \sin (\mathrm{t})\right.$ ) |
| psixx | psixX*iJXx+psixY*iJYx |
| psixy | psixX*iJXy+psixY*iJYy |
| psiyx | psiyX*iJXx+psiyY*iJYx |
| psiyy | psiyX*iJXy+psiyY*iJYy |
| 3 Click OK. |  |

## Subdomain Settings

I From the Multiphysics menu, choose Weak Form, Subdomain (mesh).
2 In the Subdomain Settings dialog box, enter the following settings:

| SUBDOMAIN | 1 |
| :---: | :---: |
| weak(I) | ```dJ*((test(psixX)*iJXx+test(psixY)*iJYx)*psixx+(test(psi xX)*iJXy+test(psixY)*iJYy)*psixy)``` |
| weak(2) | ```dJ*((test(psiyX)*iJXx+test(psiyY)*iJYx)*psiyx+(test(psi yX)*iJXy+test(psiyY)*iJYy)*psiyy)``` |
| weak(3) | test(x)*psix |
| weak(4) | test(y)*psiy |
| dweak(1) | 0 |
| dweak(2) | 0 |
| dweak(3) | test (x)*x_time |
| dweak(4) | test(y)*y_time |
| init(I) | 0 |
| init(2) | 0 |
| init(3) | X |
| init(4) | Y |

## 3 Click OK.

4 From the Multiphysics menu, choose Weak Form, Subdomain (ns).

5 In the Subdomain Settings dialog box, enter the following settings:

| SUBDOMAIN | 1 |
| :---: | :---: |
| weak(1) | $\begin{aligned} & -d J *((\text { test }(u X) * i J X x+t e s t(u Y) * i J Y x) *(2 * n u * u x-p)+(\text { test } \\ & (u X) * i J X y+\text { test }(u Y) * i J Y y) * n u *(u y+v x)+\text { test }(u) *((u-p s i x \\ & ) * u x+(v-p s i y) * u y)) \end{aligned}$ |
| weak(2) | $\begin{aligned} & -d J *((\text { test }(v X) * i J X y+t e s t(v Y) * i J Y y) *(2 * n u * v y-p)+(\text { test } \\ & (v X) * i J X x+t e s t(v Y) * i J Y x) * n u *(u y+v x)+\text { test }(v) *((u-p s i x \\ & ) * v x+(v-p s i y) * v y)) \end{aligned}$ |
| weak(3) | -dJ*(-test (p)*(ux+vy)) |
| dweak(I) | u_time*u_test*dJ |
| dweak(2) | v_time*v_test*dJ |
| dweak(3) | 0 |
| shape | shlag(2, 'u') shlag(2, 'v') shlag(2, 'p') |
| gporder | 442 |
| cporder | 221 |

## 6 Click OK.

## Boundary Conditions

I From the Multiphysics menu, choose Weak Form, Subdomain (mesh).
2 In the Boundary Settings dialog box, enter the following settings:

| BOUNDARY | $\mathbf{1 , 2 , 5 , 8}$ | $\mathbf{3 , 4 , 6 , 7}$ |
| :--- | :--- | :--- |
| constr(I) | psix | psix-U |
| constr(2) | psiy | psiy-V |
| constr(3) | 0 | 0 |
| constr(4) | 0 | 0 |

3 Click OK.
4 From the Multiphysics menu, choose Weak Form, Subdomain (ns).
5 In the Boundary Settings dialog box, enter the following settings:

| BOUNDARY | $\mathbf{1 , 2 , 5 , 8}$ | $\mathbf{3 , 4 , 6 , 7}$ |
| :--- | :--- | :--- |
| constr(I) | u | $\mathrm{u}-\mathrm{U}$ |
| constr(2) | v | $\mathrm{v}-\mathrm{V}$ |
| constr(3) | 0 | 0 |

6 Click OK.

## Point Settings

I Open the Point Settings dialog box.
2 Select point l, click the Constr tab, and type p in the third (bottom) edit field.
3 Click OK.

## MESH GENERATION

I Open the Mesh Parameters dialog box.
2 Type 0.1 in the Mesh curvature factor edit field.
3 Click OK.
4 Click the Initialize Mesh toolbar button.

## COMPUTING THE SOLUTION

Start by computing the mesh displacements and mesh velocity, and then use it during the actual fluid flow computation.

I From the Solve menu, choose Solver Parameters.
2 In the Solver list, select Time dependent.
3 Enter 0 2*2*pi in the Times edit field.
4 Enter 1e-4 in both the Relative tolerance and Absolute tolerance edit fields.
5 Click the Time Stepping tab.
6 Select Time steps from solver in the Times to store in output list.
7 Type 3 in the Maximum BDF order edit field.
8 Select Yes in the Singular mass matrix list.
9 Select Backward Euler in the Consistent initialization of DAE systems list.
10 Select Exclude Algebraic in the Error estimation strategy list.
II Click the Advanced tab.
12 In the Scaling of variables area, select None.
I3 Click OK.
14 From the Solve menu, choose Solver Manager.
15 Click the Initial value expression option button in the Initial value area and the Use setting from Initial value frame option button in the Value of variables not solved for and linearization point area.

16 Click the Solve For tab.
17 Select Weak form, Subdomain (mesh).

## 18 Click OK.

19 Click the Solve button.
$\mathbf{2 0}$ From the Solve menu, choose Solver Parameters.
21 Click the General tab.
2 Type linspace ( $0,2 * 2 *$ pi, 101) in the Times edit field.
$\mathbf{Z B}^{\mathbf{3}}$ Click the Time Stepping tab.
24 Enter 5 in the Maximum BDF order edit field.
$\mathbf{2 5}$ Select Specified times in the Times to store in output list.
${ }^{26}$ Click $\mathbf{O K}$.
2 From the Solve menu, choose Solver Manager.
${ }_{2 B}$ Click the Current solution option button in the Initial value frame.
29 in the Values of variables not solved for and linearization point area, click the Current solution option button and select All in the Solution at time list.

30 Click the Solve For tab.
31 Select Weak form, Subdomain (ns).
32 Click OK.
33 Click the Solve button.

## POSTPROCESSING AND VISUALIZATION

I Open the Plot Parameters dialog box.
2 On the Surface tab, enter the expression $p$ in Surface data, Expression.
3 On the Arrow tab, enter $u$ and $v$ on the Subdomain tab. Check Arrow plot.
4 On the Deform tab, enter $\mathrm{x}-\mathrm{X}$ and $\mathrm{y}-\mathrm{Y}$ on the Subdomain tab. Check Subdomain and uncheck Boundary. Check Deformed shape plot.
5 Click OK.
6 Click the Animation toolbar button.
Model Library path: FEMLAB/Fluid_Dynamics/ale_free_boundary

## Modeling Using the Graphical User Interface

## MODEL NAVIGATOR

I In the Model Navigator, select 2D in the Space dimension list.
2 In the PDE Modes folder, select Weak Form, Subdomain.

3 Type psix psiy xy in the Dependent variables edit field.
4 Click the Multiphysics button and then the Add Geometry button.
5 Keep the 2D space dimension, and enter $X Y Z$ as independent variables.
6 Click OK.
7 Type mesh in the Application mode name edit field.
8 Click Add.
9 In the PDE Modes folder, select Weak Form, Subdomain.
10 Type $u v p$ in the Dependent variables edit field.
II Type ns in the Application mode name edit field.
12 Click Add.
I3 In the PDE Modes folder, select Weak Form, Boundary.
14 Type lx ly in the Dependent variables edit field.
15 Type free in the Application mode name edit field.
16 Click Add.
17 Click OK.

OPTIONS AND SETTINGS
I From the Options menu, choose Constants.
2 In the Constants dialog box, define the following constants with names and expressions:

| NAME | EXPRESSION |
| :--- | :--- |
| nu | 0.01 |
| A | 1 |

3 Click OK.

## GEOMETRY MODELING

I Shift-click on the Ellipse/Circle (Centered) button in the Draw toolbar. Enter radius 1 , and keep the default origin.
2 Shift-click on the Ellipse/Circle (Centered) button in the Draw toolbar. Enter radius 0.7 , and keep the default origin.

3 Press CtrI+A to select both domains and then click the Difference button.

## PHYSICS SETTINGS

## Expression Variables

I On the Options menu, point to Expressions and then click Subdomain Expressions.
2 Enter the following expression variables for subdomain l:

| sUbDOMAIN | 1 |
| :--- | :--- |
| $d J$ | $x X * y Y-x Y^{*} y X$ |
| $i J X x$ | $y Y / d J$ |
| $i J X y$ | $-x Y / d J$ |
| $i J Y x$ | $-y X / d J$ |
| $i J Y y$ | $x X / d J$ |
| $u x$ | $u X * i J X x+u Y * i J Y x$ |
| $u y$ | $u X * i J X y+u Y * i J Y y$ |
| $v x$ | $v X * i J X x+v y^{*} i J Y x$ |
| vy | $v X * i J X y+v Y * i J Y y$ |

3 Click OK.

## Subdomain Settings

I From the Multiphysics menu, choose Weak form, Subdomain (mesh).
2 In the Subdomain Settings dialog box, enter the following settings:

| SUBDOMAIN | 1 |
| :---: | :---: |
| weak(I) | test(psixX)*psixX+test(psixY)*psixY |
| weak(2) | test(psiyX)*psiyX+test(psiyY) *psiyY |
| weak(3) | test (x)*psix |
| weak(4) | test (y)*psiy |
| dweak(I) | 0 |
| dweak(2) | 0 |
| dweak(3) | test (x)*x_time |
| dweak(4) | test (y)*y_time |
| init(I) | 0 |
| init(2) | 0 |
| init(3) | X |
| init(4) | Y |

3 Click OK.

4 From the Multiphysics menu, choose Weak Form, Subdomain (ns).
5 In the Subdomain Settings dialog box, enter the following settings:

| SUBDOMAIN | 1 |
| :---: | :---: |
| weak(1) | $\begin{aligned} & -d J^{*}((\text { test }(u X) * i J X x+\text { test }(u Y) * i J Y x) *(2 * n u * u x-p)+(\text { test } \\ & (u X) * i J X y+\operatorname{test}(u Y) * i J Y y) * n u *(u y+v x)+\text { test }(u) *((u-p s i) \\ & * u x+(v-p s i y) * u y+10 * x)) \end{aligned}$ |
| weak(2) | $\begin{aligned} & -d J *((\text { test }(v X) * i J X y+\text { test }(v Y) * i J Y y) *(2 * n u * v y-p)+(\text { test } \\ & (v X) * i J X x+t e s t(v Y) * i J Y x) * n u *(u y+v x)+\text { test }(v) *((u-p s i) \\ & * v x+(v-p s i y) * v y+10 * y)) \end{aligned}$ |
| weak(3) | -dJ*(-test (p)*(ux+vy)) |
| dweak(1) | $u_{-}$time*u_test*dJ |
| dweak(2) | v_time*v_test*dJ |
| dweak(3) | 0 |
| init(1) | A |
| init(2) | 0 |
| init(3) | 0 |
| shape | shlag(2, 'u') shlag(2, 'v') shlag(1, 'p') |
| gporder | 442 |
| cporder | 221 |

## 6 Click OK.

## Boundary Conditions

I From the Multiphysics menu, choose Weak Form, Subdomain (mesh).
2 In the Boundary Settings dialog box, enter the following settings:

| BOUNDARY | $\mathbf{1 , 2 , 5 , 8}$ | $\mathbf{3 , 4 , 6 , 7}$ |
| :--- | :--- | :--- |
| constr(I) | 0 | psix |
| constr(2) | 0 | psiy |
| constr(3) | 0 | 0 |
| constr(4) | 0 | 0 |
| weak(I) | test(psix)*lx | 0 |
| weak(2) | test(psiy)*ly | 0 |
| weak(3) | 0 | 0 |
| weak(4) | 0 | 0 |

3 Click OK.

4 From the Multiphysics menu, choose Weak Form, Subdomain (ns).
5 In the Boundary Settings dialog box, enter the following settings:

| BOUNDARY | $\mathbf{1 , 2 , 5 , 8}$ | $\mathbf{3 , 4 , 6 , 7}$ |
| :--- | :--- | :--- |
| constr(I) | 0 | u |
| constr(2) | 0 | V |
| constr(3) | 0 | 0 |

6 Click OK.
7 From the Multiphysics menu, choose Weak form, Boundary (free).
8 In the Boundary Settings dialog box, enter the following settings

| BOUNDARY | $\mathbf{1 , 2 , 5 , 8}$ | $\mathbf{3 , 4 , 6 , 7}$ |
| :--- | :--- | :--- |
| weak(l) | test $(l x) *($ psix-u $)$ | 0 |
| weak(2) | test $(l y) *($ psiy $-v)$ | 0 |

9 Clear the Active in this domain check box for boundaries 3, 4, 6, and 7 .
10 Click OK.

## MESH GENERATION

I Open the Mesh Parameters dialog box.
2 Set the Maximum element size to 0.1.
3 Click OK.
4 Click the Initialize Mesh toolbar button.

## COMPUTING THE SOLUTION

I From the Solve menu, choose Solver Parameters.
2 Select Time dependent from the Solver list.
3 Type linspace $(0,10,101)$ in the Times edit field.
4 Type 1e-6 in both the Relative tolerance and the Absolute tolerance edit field.
5 Click the Time Stepping tab.
6 Select Yes in the Singular mass matrix list.
7 Select Backward Euler in the Consistent initialization of DAE systems list.
8 Select Exclude algebraic in the Error estimation strategy list.
9 Click the Advanced tab.
10 In the Scaling of variables area, select None.

II Click OK.
$\mathbf{1 2}$ Click the Solve button.

## POSTPROCESSING AND VISUALIZATION

I Open the Plot Parameters dialog box.
2 On the Surface tab, type the expression p in the Expression edit field in the Surface data area.

3 On the Arrow tab, enter $u$ and $v$ on the Subdomain tab. Select the Arrow plot check box.

4 On the Deform tab, type $x-X$ and $y-Y$ on the Subdomain tab. Select the Subdomain check box and clear the Boundary check box. Select the Deformed shape plot check box.

5 Click OK.
Click the Animation toolbar button.

