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Abstract
A magnetic field associated with a current-carrying coil(s)
extends towards infinity, but an analytical model is of finite
size. In the finite element analysis (FEA) of electromagnetic
systems, open space needs to be modelled as close to reality
as possible to obtain reliable results without losing accuracy
and by saving computational costs. Using magnetic vector
potential (A) formulation, such electromagnetic systems
can be modelled by the open boundary condition (OBC),
also called the asymptotic boundary condition (ABC) in
the literature/FEMM. In COMSOL, there is no explicit
ABC, so the current density boundary condition is modified
to model the open domain asymptotically. Ampere’s
law along with the solution of ’A’ makes the surface
current density boundary condition behave like ABC. In
this paper, the FEA problem is set where the self and mutual
inductance of two single-turn circular coplanar concentric
coils is obtained using OBC and a comparison is made
with the infinite element domain of COMSOL and the
Dirichlet boundary condition. This paper discusses how
the implemented OBC and infinite element domain of
COMSOL are analogous and can be used interchangeably.
The developed modelling technique can be used in the
analytical design of electromagnetic systems giving reliable
results within confined design space, saving computational
time and resources.
Keywords: Finite element analysis, Open boundary

condition, Dirichlet boundary condition, Infinite element
domain, FEMM.

I. Introduction
Electromagnetic field designs rely on Finite Element
Analysis (FEA) for the accurate prediction of system
behaviour before a system is physically built. FEA is a
numerical tool that can analyse the electromagnetic system
under consideration. The strength of FEA lies in its ability
to predict system behaviour accurately or as close to full
accuracy as possible. It is essential that the FEA design
problem is set as close to reality as possible in order for the
system performance factors to be accepted.

Modelling of the magnetic field associated with current-
carrying coils in electromagnetic systems is one such design
problem. The field extends towards infinity but becomes
weaker with increasing distance from its source. Several
analytical methods have been devised to model the magnetic
field by FEA, such as open boundary condition (OBC). OBC
utilizes magnetic vector potential (A) formulation and can be
implemented in FEA packages like Finite Element Methods
Magnetics (FEMM) and COMSOL Multiphysics.

The FEMM electromagnetic simulator implements OBC
by naming it as an asymptotic boundary condition (ABC)
[3]. COMSOL is a widely accepted and used FEA software
for engineering designs but does not have explicit ABC.
However, in COMSOL other boundary conditions can be
made to behave like ABC [2]. COMSOL has devised a way
of modelling an open-space magnetic field in the infinite

element domain.
In this paper, the COMSOL infinite element domain

is shown to be analogous to ABC. The FEA problem
is set up, and self and mutual inductance between two
coplanar circular single-turn coils is obtained in AC and DC
settings. The magnetic field associated with the open space
is modelled by magnetic vector potential (A) formulation.
The theory of the magnetic field and its characteristics in
open space are arranged in the form of a boundary condition.
When this boundary surrounds a design space, it gives the
effect of a magnetic field in open space. The developed
boundary condition is implemented in COMSOL, and the
results are compared with ABC in FEMM, as well as the
infinite element domain in COMSOL.

Section II of the paper details the theory related to the open
boundary condition in FEMM, and OBC is implemented in
COMSOL by utilizing and modifying the surface current
density boundary condition. In section III, the FEA problem
is set up and the coplanar single-turn circular coils are
modelled. Section IV gives an analytic solution of self
and mutual inductance in the problem setup. Section V
provides a detailed comparison of the results through ABC
in FEMM & COMSOL and the infinite element domain in
COMSOL. The developed problem is analysed in steady-
state and frequency domain setups. The advantage of ABC
is highlighted where it is claimed to be useful in reducing
computation time and model size compared to the Dirichlet
boundary condition. Section VI concludes the paper.

II. Open Boundary Condition
In electromagnetic problems, FEMM approximates open
space by ABC (in this paper the two abbreviations ABC
and OBC are used interchangeably). The problem domain
is a circular shell of radius r in an unbounded region. As
the radius of the domain approaches infinity, the magnetic
vector potential (A) approaches zero. On the surface of the
circle, ’A’ is a prescribed function of θ and is given by:

A(r, θ) =
∞∑

m=1

am

rm cos(mθ + αm) (1)

’A’ is a harmonic function and the expansion of the above
expression shows that increasing the number of harmonics
leads to the faster decay of their magnitude with increasing
r. This is exactly correct at infinity but only approximately
correct when imposed at a finite boundary. With n as the
number of leading harmonics, the relation between ’A’ and
its derivative on a circular artificial boundary of radius r is:

∂A
∂r

+ (
n
r
)A = 0 (2)

which is recognised as an asymptotic boundary condition
(ABC) and FEMM supports this as a “mixed” boundary
condition with the form:

1

µoµr
(
∂A
∂r

) + coA + c1 = 0
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where
co =

n
µoµrr

c1 = 0

COMSOL does not have such boundary conditions, so
one of its built-in boundaries, the surface current density
boundary condition, is modified to model the open domain
asymptotically. The surface current density boundary
condition yeilds

−n× H = Js

Js is the surface current density. It can be obtained from
Ampere’s law and using the relation between magnetic field
intensity (H) and magnetic flux density (B).

J = ∇× H = ∇× (
B
µ
) = ∇× (

∇× A
µ

)

using eq. (2)

J =
∇× (−r−1A)

µ
= −∇× A

rµ
= −

Aphi

rµ
(3)

(Aphi is the phi component of Magnetic vector potential).
Equating eq. (3) and Ampere’s law causes the surface
current density boundary condition to behave like a 1st order
ABC. In COMSOL 2D axisymmetric model, this is achieved
(Figure 1) by implementing the expression

Jso = −
Aphi

mu0 const ∗ sqrt(r ∗ r + z ∗ z)

which is by default set to zero.

Figure 1

III: Problem geometry setup
The geometrical arrangement of the two single-turn circular
coils in a concentric arrangement is shown in Figure 2. If
these coils are arranged in a concentric planar form with
condition R1 � R2 � ro, the resulting geometry becomes
that which is shown in Figure 3. R1 is the radius of the outer
coil. R2 is the radius of the inner coil and ro is the radius of
both conductors. Under the condition R1 � R2 � ro the
problem geometry becomes that which is shown in Figure
4. The coil 1 carries the current, while the coil 2 is open-
circuited. The self-inductance of a current-carrying coil
(L11) and the mutual inductance (M12) between the two
coils are computed to make analogies and comparisons.

IV: Analytical solution
The analytic solution for self and mutual inductance can be
obtained for this problem. If a current of 1 Amp is switched
on in coil 1 (Figure 4), the self-inductance of coil 1 in free
space is given by [4]

L11 = µoR1[ln(
8R1

ro
)− 1.75] (4)

Figure 2: Concentric single-turn coils

Figure 3: Concentric coplanar single-turn coils

Figure 4: Resulting geometry

The mutual inductance for coil 2 is obtained using the Biot-
Savart law (Figure 5).

The differential element of magnetic field (dB) due to the
elemental length (dl) is

dB = (
µoI
4π

)(
dl sin900

r2
)

All dBcosθ cancel out giving a total magnetic field density
of

B =
∑

dB sinθ

B = (
µo

4π
)

∮
(

dl sinθ
r2

)

B =
µoR2

1

2(R2
1 + x2)(3/2)

At the axis, x=0
B =

µo

2(R1)

Mutual inductance for the inner coil is given as

M12 = B(area of coil 2)

M12 = (
µo

2(R1)
)(πR2

2) (5)

The analytic solutions in eqs. (4) and (5) are valid under the
assumption R1 � R2 � ro; otherwise, the classical solution
involves elliptic integrals [5].
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Figure 5: Biot savart law

Parameters
radius of coil 1=R1=100mm
radius of coil 2=R2=10mm

radius of wire=r0=1mm
current in coil 1=1Amp

current in coil 2=0 (open circuited)

With the above parameters, the self-inductance for coil 1 and
mutual inductance yields the analytic values:

L11 = 6.19208× 10−7H (6)

M12 = 1.97192× 10−9H (7)

These values are used to make the comparisons presented in
the next section.

Section V: Comparison between Open
boundary condition and Infinite element
domain
A comparison is first made under a steady-state (DC)
condition and later in the frequency domain (AC).

DC Analysis
2D model forms
A 2D axisymmetric problem is set up where the quantities
are independent of the azimuthal component. Models in two
solvers are:

• FEMM with asymptotic boundary condition

• COMSOL with asymptotic boundary condition

• COMSOL with infinite element domain

Results from the above models are also compared with 3D
equivalent geometry in COMSOL using an infinite element
domain.

FEMM with asymptotic boundary condition
Using defined parameters, the FEMM 2D axisymmetric
problem is set up. The outer boundary is modelled with
ABC. At varying numbers of harmonics, n=1, 2, 3, 5, 10,
and 20, plots of magnetic flux density and magnetic vector
potential (from coil 1 to the outer boundary) are obtained.
For n=1 and n=20, these are given in Figures 6 and 7.

The results show that as the number of harmonics
(significant terms in eq. (1)) increases while keeping the
boundary at a constant distance, more flux permeated the
domain. However, an error in self and mutual inductance
values increases with an increasing number of harmonics,

Figure 6: 1st order ABC, Magnetic flux density (left), Magnetic
potential from coil 1 to outer boundary (right)

Figure 7: 20th order ABC, Magnetic flux density (left), Magnetic
potential from coil 1 to outer boundary (right)

as shown in the Table 1. This is because as the number of
harmonics increases, the potential at the boundary increases
(second term in eq. (2)) leading to an increasing error value.

n L11

(10−7H)
Error L11

(%)
M12

(10−9H)
Error M12

(%)
1 6.115 1.25 1.975 0.17
2 6.052 2.27 1.914 2.95
3 6.014 2.88 1.877 4.82
5 5.97 3.59 1.835 6.96
10 5.924 4.33 1.791 9.19
20 5.895 4.80 1.763 10.61

Table 1: Self & mutual inductance at varying numbers of harmonics
in ABC

COMSOL with asymptotic boundary condition
Using defined parameters, the COMSOL 2D axisymmetric
problem is set up. The outer boundary is modelled with the
surface current density boundary condition in the form of
ABC (Figure 1). The obtained self and mutual inductance
values are:

L11 = 6.2033× 10−7H

M12 = 1.9764× 10−9H

Both of these values have an error of 0.2% when compared
to the analytically calculated values in eqs. (6) and (7). The
magnetic flux density obtained in FEMM and COMSOL for
1st order ABC under given conditions is shown in Figure 8.
The results illustrate that there is a good comparison between
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(a) (b)

Figure 8: Magnetic flux density with 1st order ABC (a) FEMM (b)
COMSOL

the results obtained from both solvers and ABC is correctly
implemented in COMSOL.

COMSOL with infinite element domain
COMSOL has a built-in feature, the infinite element domain,
to model open boundaries. This infinite element domain
applies a semi-infinite coordinate stretching in one, two,
or three directions, depending on how the infinite element
domain connects to the physical domain. The COMSOL
2D axisymmetric model was tested with an infinite element
domain at the outer boundary and magnetic flux density was
found to be the same as in Figure 8(b). Self and mutual
inductance were found to be 6.1938× 10−7H and 1.9746×
10−9H which depicts an error of 0.02% and 0.1% when
compared to the analytical values in eqs. (6) and (7).

COMSOL 3D Implementation with infinite element
domain
The 3D version of the problem is implemented in COMSOL
as shown in Figure 9.

Figure 9: 3D Topology

The self and mutual inductance obtained from this model
were:

L11 = 6.192× 10−7H

M12 = 1.975× 10−9H

demonstrating a notable similarity to the analytically
calculated values in eqs. (6) and (7). This shows a 3D
COMSOL model of a given problem, with an infinite
element domain, compares well with analytic 2D FEMM
(ABC), 2D COMSOL (ABC), and 2D COMSOL (infinite
element domain) solutions.

Advantage of ABC
The 2D model is used to make a comparison between
1st order ABC and A=0 (Dirichlet (FEMM) /Magnetic
insulation(COMSOL)) conditions. Self and mutual
inductance are obtained while varying the radius of the outer
boundary, increasing its value from 0.15m to 0.5m. The
self and mutual inductance at each radius value and the
percentage error from their respective analytic values (see
eq. (5) and (6)) are shown in graphs of Figure 10.

(a)

(b)

Figure 10: (a) Self inductance VS Error (1st order ABC (b) Mutual
inductance VS Error (1st order ABC)

With the increasing radius of the outer boundary, 1st order
ABC shows better results as an error in self and mutual
inductance is a maximum of 2.17% and 0.61% respectively
(Figure 10), which is reasonable.
With A=0, Dirichlet/Magnetic insulation boundary the error
is a maximum when the boundary is closer to the working
domain, that is 20.7% for L11 and 50.9% for M12 (Figure
11). The error decreases as the radius of the boundary is
increased.

It can be said that ABC, when models open boundary, can
be placed closer to the working domain and one can still
get close to accurate results; however, the A=0 boundary
condition needs to be placed at the outer boundary far away
from the working domain, typically at five times or higher
the radius of the working domain. So, ABC can reduce the
size of the model and save computation time.

AC Analysis
The 2D FEMM ABC model, 2D axisymmetric COMSOL
model, and 3D infinite element domain model (developed
in the last section) are studied in the frequency domain
(AC). A current of 1 Amp at 1kHz is turned on in the coil 1.
The induced voltage in coil 2 (modelled as an open circuit)
and mutual inductance are obtained. In the time-harmonic
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(b)

Figure 11: (a) Self-inductance VS Error (Dirichlet/Magnetic
insulation) (b) Mutual inductance VS Error ( (Dirichlet/Magnetic
insulation)

(frequency domain) case, the mutual inductance is computed
as:

M12 =
V2

iωI1
(8)

where V2 is the induced voltage in coil 2 and I1 is the
current in coil 1. The induced voltage and mutual inductance
found with developed models are given in Table 2. Values

Solver Boundary
condition

Model V2

(10−5V)
L12

(10−9H)
FEMM ABC 2D 0.00231

+1.24162i
1.9761
-0.00368i

COMSOL ABC 2D 0.00240
+1.2416i

1.9761
-0.00382i

COMSOL infinite
elements

2D 0.00240
+1.2412i

1.9754
-0.00382i

COMSOL infinite
elements

3D 0.00238
+1.2416i

1.9760
-0.00378i

Table 2: Induced voltage and mutual inductance under AC
conditions

from all three models resemble each other closely. This
further verifies that ABC and the infinite element domain
give the same results and are analogous. The computed
mutual inductance has a small imaginary component and
this is due to the resistive effects. There are eddy current
losses in the wires, due to finite conductivity, and the coil
AC impedance, though mainly reactive, has a small resistive
part [1].

Section VI: Conclusion
The COMSOL surface current boundary condition
is modified to model an open-space magnetic field
asymptotically. This boundary is compared to FEMM
ABC by measuring the self-inductance and mutual
inductance between two coplanar concentric single-
turn circular coils. The outer boundary in the
COMSOL model is replaced by an infinite element
domain and the results are found to be the same as
those obtained for the ABC model. In an analysis
of AC and DC conditions, ABC and infinite element
domain models give the same values of self and
mutual inductance related to the developed FEA
problem. At the outer boundary of FEA design space,
the ABC and infinite element domain are found to
model an open-space magnetic field. Thus, the ABC
and infinite element domain are analogous and can be
used in place of each other.
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