

CFD-based Approach For Prediction Of Headspace Pressure In Can During Thermal Sterilization Of Foods

Authors: <u>Sadhan Jyoti Dutta^{1,2},</u> Olivier Rouaud¹, Patrice Dole², Alexandre Thillier³, Nicolas Belaubre², Sebastien Curet^{1*}

¹Oniris, Nantes Université, CNRS, GEPEA, UMR 6144, F-44000 Nantes, France ²CTCPA, 64 Rue de la Géraudière, 44322 Nantes Cedex, France ³SAIREM - 82 Rue Elisée Reclus, 69150 Décines-Charpieu, Lyon, France

COMSOL Conference 2024, Florence, 22 – 24 October 2024

Introduction

Numerical Modelling

Results

Conclusion and perspectives

What is Thermal Sterilization?

Raw Food

Thermal sterilization using Retort

- Heat treatment above 100°C
- Destroys heat-resistant spores

Canned Foods with longer shelf life (eg. \geq 2 years)

СТСРА

Introduction

Results

Context

Retort Overview

Schematic of a conventional retort for thermal sterilization

Introduction

Numerical Modelling

Results

Challenge and Goal

Headspace Pressure

Challenge

- Measuring headspace pressure due to water vapour in the food industry is a big challenge.
- External counter-pressure is required to tackle inner pressure generated in canned foods which is related to headspace pressure.

Goal

 To predict local temperatures and internal headspace pressure in cans during thermal sterilization process, which accounts for water vapor generation and dry air pressure in the headspace.

СТСРА

saires

Numerical Modelling

Results

Conclusion and perspectives

Materials and Methods

Experimental Setup

STERITECH Retort in Oniris, Nantes, France

Schematic of experimental setting

Numerical Modelling

Results

Conclusion and perspectives

Materials and Methods

Experimental Setup

RÉPUBLIQUE FRANÇAISE

3 cans for top temperature

3 cans for center temperature

3 cans for headspace temperature

3 cans for bottom temperature

Mass of mashed potato = 279.96 ± 0.42 g

Temperature probes

Pressure sensor inside cans

СТСРА

Governing Equations

Numerical Modelling: Governing Equations

Heat Transfer in Solids (mashed potato)

$$\rho C_p \frac{\partial T}{\partial t} - \nabla (-k\nabla T) = 0$$
⁽¹⁾

+Initial Conditions +Boundary Conditions $T_{initial} = 20^{\circ}C$

$$-n.q = q_0 \tag{2}$$

$$q_0 = h_{global}(T_{retort} - T)$$
(3)

Heat Transfer in Fluids (air at the headspace)

$$\rho C_p \frac{\partial T}{\partial t} + \rho C_p \boldsymbol{u} \cdot \nabla T - \nabla \cdot (k \nabla T) = 0 \qquad (4)$$

+Initial Conditions + Boundary Conditions

RÉPUBLIQUE FRANCAISE CTCP/

Dairon

Fluid Mechanics : Navier-Stokes equations with the Boussinesq approximation (air at the headspace)

$$\rho \frac{\partial \boldsymbol{u}}{\partial t} = -\nabla p + \mu \nabla^2 \boldsymbol{u} + F \tag{5}$$

$$F = \rho g \tag{6}$$

+Initial Conditions +Boundary Conditions p = 1 [atm]

$$\boldsymbol{u}_{initial} = \boldsymbol{0} \tag{7}$$

Ideal gas law for dry air at the headspace

$$\mathsf{P}V = nRT \tag{8}$$

GEPEA

Conclusions and Perspectives

The numerical model coupled to the experimental investigation enables to:

- Predict local temperature profiles at different locations in canned foods.
- Predict dry air pressure in the headspace.
- Estimate the water vapour pressure contributing towards headspace pressure
- Evaluate the mass of water vapour generated during the thermal sterilization process.

Perspectives

Improvement of the numerical model by integrating water vapour evaporation flux in the CFD model.

Thank You Very Much For Your Attention

Contact: <u>Sadhan-jyoti.dutta@oniris-nantes.fr</u> <u>Sjyotidutta@ctcpa.org</u>

