

Developing 2D and 3D Micropolar FEM Models for Porous GBR Meshes in Dentistry Applications 22-24 October 2024, Florence, Italy

Introduction Guided Bone Regeneration (GBR) Mesh

- **.** Using a mechanical barrier, such as a membrane, to separate and protect the area of bone loss from the surrounding tissue.
- **1** Exposing the Bone Defect: A small incision to access the area of defect.
- **2** Bone Grafting: a cement that may contain bone, antimicrobial additives and stimulants that promotes new bone growth is placed under the membrane.
- **3** Preparing GBR Mesh: cut and formed by the surgeon
- **4** Placing and fixing the GBR Mesh

COMSOI

- New bone can grow in the designated area.
- Enough stiffness to create and maintain a suitable space for the intended bone regeneration.
- Enough porosity to facilitate the diffusion of fluids, oxygen, nutrients, and bioactive substances for cell growth.

Introduction Equivalent Homogenised Models for Porous Structures

- When the geometry includes pores, there is an internal structure.
- By using equivalent model and defining effective properties instead of the real microstructure, we can decrease computational expense of modelling and discretisation.
- Non-classical continuum theories can consider the internal structure without direct modelling of details.
- In the present work, non-classical micropolar theory as the homogenised equivalent model is implemented for the porous structures in 2D and 3D.

Introduction Micropolar Theory

COMSOL

October 22-24

ERENCE

- Degrees of Freedom: **U**, Φ
- **•** Kinematic Relations: $E_{ij} = U_{j,i} + e_{jik} \Phi_k$

 $K_{ij} = \Phi_{j,i}$ and M

- Balance Equations: $\Sigma_{ij,i} + P_j = 0$ $M_{ij,i} + e_{ijk} \Sigma_{jk} + Q_k = 0$, we say evaple
- **•** Constitutive Equations: $\Sigma_{ij} = A_{ijkl}E_{kl} + B_{ijkl}K_{kl}$ (Linear Elastic) $\sum_{ijkl} L_k$ *l ijkl kl* $M = B_{\alpha} E_{\alpha} + D_{\alpha} K_{\alpha}$
- Φ Micro-rotation
- Nonsymmetric Strain *E*
- K Curvature
- Nonsymmetric Stress \sum
- *M* Couple-stress and the stress
- Body Force *P*
- Body Couple *Q*

- New strain measure as **Curvature**.
- New stress measure as **Couple-stress**.

Methodology 2D Tetragonal Micropolar Model for Porous Plate

- General linear elastic constitutive equations in plane
- Ortho-tetragonal Material Symmetry

CONFERENCE 2024 FLORENCE October 22-24

Considering the linear elastic micropolar in 2D, for the geometries we study here, 5 independent material parameters are required to define the equivalent model.

Methodology Homogenization of 2D Model

COMSOI

October 22–24

- The heterogeneous structure, is called **Micro Model** and is described by Cauchy continuum.
- Homogenised model is called **Macro Model** and is described by constitutive parameters of a micropolar continuum.
- Kinematic Map: Links the two levels of description
- Express the microscopic displacement field within the RVE as a function of the macroscopic strain measures at the material point on the macro-level.

$$
u^{\text{hom}} = E_{11} x + E_{12}^{SYM} y - \frac{K_2}{2} y^2 - K_1 xy - \frac{10}{L^2} \Theta(y^3 - 3yx^2)
$$

\n
$$
v^{\text{hom}} = E_{12}^{SYM} x + E_{22} y + \frac{K_1}{2} x^2 + K_2 xy + \frac{10}{L^2} \Theta(x^3 - 3xy^2)
$$

\n
$$
U, V, \Phi
$$

Macro Model

Methodology Homogenization of 2D Model

- Once the kinematic map is determined, we proceed to discover the micropolar material parameters.
- We use the finite element method (FEM) to compute the response of the porous structure under different loadings.
	- Extract the total elastic strain energy W_{FEM} stored in the RVE from COMSOL.
	- Equating to the energy of an equivalent micropolar continuum $W_{Micro polar}$ from analytical expression.
- For each scenario, the micropolar material parameters are determined in such a way that the homogenized model retains the same amount of strain energy when exposed to the same loading conditions.

Methodology Finding Effective Micropolar Material Parameters for 2D Model

Equivalent homogenized model form Functionally **G**raded (**FG**) porous structure is derived by considering the homogenization procedure developed for homogenous porosities.

A1111, A1122 A1111, A1122

D₁₁

A1212, A1221

A1212, A1221

D₁₁

Pore Size (lp)

 $\begin{array}{ccccccccccccccccc} \circ & \circ & \circ & \circ & \circ & \circ & \circ \end{array}$ $\begin{array}{ccccccccccccccccc} \circ & \circ \end{array}$

 0000000 00000000 ~ 1000

- First, a parametric study is conducted to find the equivalent parameters of uniform porous plates with various pore sizes.
- **.** In this parametric study, the pore density (the number of pores per unit length) is kept constant.

 $\begin{array}{ccccccccccccc}\n0 & 0 & 0 & 0 & 0 & 0\n\end{array}$

 $0 0 0 0 0$

 $\begin{array}{ccccccccccccccccc} \circ & \circ & \circ & \circ & \circ & \circ & \circ \end{array}$

 $0 0 0 0 0$

 $\begin{array}{ccccccccccccccccc} \circ & \circ & \circ & \circ & \circ & \circ & \circ \end{array}$

A1212,A1221

D11

...

A1111, A1122 A1111, A1122

D11

A1212,A1221

 $\begin{array}{ccccccccccccccccc} \circ & \circ & \circ & \circ & \circ & \circ & \circ \end{array}$

 $\begin{array}{ccc} 0 & 0 & 0 & 0 & 0 \end{array}$

 00000

 00000

 00000

Pore Size (lp)

 $\begin{array}{ccccccccccccccccc} \circ & \circ \end{array}$

 $\begin{array}{ccccccccccccccccc} \circ & \circ & \circ & \circ & \circ & \circ & \circ \end{array}$

 $\begin{array}{ccccccccccccccccc} \circ & \circ \end{array}$

D11

...

▪ Pore sizes are changed to find the required equivalent parameters for each section of the FG porous structure.

...

A1111, A1122 A1111, A1122

D11

A1212,A1221

 $\begin{array}{ccc} 0 & 0 & 0 & 0 & 0 \end{array}$

 00000

 00000

 00000

A1212,A1221

 $\begin{array}{ccccccccccccccccc} \circ & \circ & \circ & \circ & \circ & \circ & \circ \end{array}$

 $\begin{array}{ccccccccccccccccc} \circ & \circ & \circ & \circ & \circ & \circ & \circ \end{array}$

 $\begin{array}{ccccccccccccccccc} \circ & \circ & \circ & \circ & \circ & \circ & \circ \end{array}$

 $\begin{array}{ccccccccccccccccc} \circ & \circ & \circ & \circ & \circ & \circ & \circ \end{array}$

 $\begin{array}{ccccccccccccccccc} \circ & \circ & \circ & \circ & \circ & \circ & \circ \end{array}$

D11

COMSOL CONFERENCE October 22-24

 $\begin{array}{ccccccccccccccccc} \circ & \circ \end{array}$

 $\begin{array}{ccccccccccccccccc} \circ & \circ & \circ & \circ & \circ & \circ & \circ \end{array}$

 00000000

D11

▪ These data are then utilised to find curvefitted functions for each material parameter with respect to the pore size.

...

A1111, A1122 A1111, A1122

D11

 \bigcirc

A1212,A1221

 $\begin{array}{ccccccccccccccccc} \circ & \circ & \circ & \circ & \circ & \circ & \circ \end{array}$

 $\begin{array}{ccc} & O & O & O & O \end{array}$

 00000

 00000

 $\begin{array}{ccc} \circ & \circ & \circ & \circ \end{array}$

A1212,A1221

 $\begin{array}{ccccccccc}\n0 & 0 & 0 & 0 & 0\n\end{array}$

 $\begin{array}{ccccccccccccccccc} \circ & \circ & \circ & \circ & \circ & \circ & \circ \end{array}$

 $\begin{array}{ccccccccccccccccc} \circ & \circ & \circ & \circ & \circ & \circ & \circ \end{array}$

 \circ \circ \circ

 $0\qquad 0\qquad 0$

D11

 \circ \circ

Pore Size $(l p)$

 $\begin{array}{ccccccccccccccccc} \circ & \circ \end{array}$

 0000000

 $\begin{array}{ccccccccccccccccc} \circ & \circ & \circ & \circ & \circ & \circ & \circ \end{array}$

D11

A1212,A1221

Methodology Homogenization of 3D Model

- A size-effect is predicted by micropolar theory for the torsion of circular cylinders.
- It is possible to determine the micropolar parameters by measuring the torsional rigidity vs size.
- Specimens at different length scales, while keeping unit cell size constant.

Methodology Homogenization of 3D Model

- Bio-inspired 3D microstructures such as gyroids and other Triply Periodic Minimal Surfaces (TPMS) can be employed for designing GBR bone scaffolds.
- Studying the impact of changes in microstructural architecture which reflects in the equivalent micropolar parameters.
- The unit cell design, porous structure and CAD model are developed using nTop software.
- Final 3D meshed part is imported in COMSOL for further FEM analyses.

CAD Model FEM Tests

COMSOL

Methodology FEM Micropolar Model in COMSOL Using PDE Weak Form

▪ Multiplying balance equations by the test functions, integrating over computational domain D Strong Form

Balance Equations

COMSOI

$$
\Sigma_{ij,i} + P_j = 0
$$

$$
M_{ij,i} - e_{ijk} \Sigma_{ik} + Q_j = 0
$$

$$
\Rightarrow \int_{D} \sum_{ij,i} v_{U_j} + \int_{D} P_j v_{U_j} = 0
$$
\n
$$
\Rightarrow \int_{D} M_{ij,i} v_{\Phi_j} - \int_{D} e_{ijk} \sum_{ik} v_{\Phi_j} + \int_{D} Q_j v_{\Phi_j} = 0
$$
\nTest Function for Φ

■ And by using the divergence theorem:

■ Based on the product rule of derivatives:

$$
\int_{D} \sum_{ij,i} v_{U_j} = \int_{D} (\sum_{ij} v_{U_j})_{i} - \int_{D} (\sum_{ij} v_{U_{j,i}})
$$

$$
\int_{D} M_{ij,i} v_{\Phi_j} = \int_{D} (M_{ij} v_{\Phi_j})_{i} - \int_{D} (M_{ij} v_{\Phi_{j,i}})
$$

Balance

\n**Plations**

\n
$$
M_{ij,i} - e_{ijk} \Sigma_{ik} + Q_j = 0
$$
\n**Based on the product rule of derivatives:**

\n
$$
\begin{aligned}\n\mathbf{S} &= \int_{D} M_{ij,i} v_{\sigma_j} + \int_{D} P_j v_{\sigma_j} = 0 \\
\text{Based on the product rule of derivatives:} \\
\mathbf{S} &= \int_{D} (\Sigma_{ij} v_{\sigma_j})_{,i} - \int_{D} (\Sigma_{ij} v_{\sigma_j})_{,j} \\
\mathbf{S} &= \int_{D} (\Sigma_{ij} v_{\sigma_j})_{,i} - \int_{D} (\Sigma_{ij} v_{\sigma_j})_{,j} \\
\mathbf{S} &= \int_{D} (M_{ij} v_{\sigma_j})_{,j} - \int_{D} (M_{ij} v_{\sigma_j})_{,j} \\
\mathbf{S} &= \int_{D} (M_{ij} v_{\sigma_j})_{,j} - \int_{D} (M_{ij} v_{\sigma_j})_{,j} \\
\mathbf{S} &= \int_{D} (M_{ij} v_{\sigma_j})_{,j} - \int_{D} (M_{ij} v_{\sigma_j})_{,j} \\
\mathbf{S} &= \int_{D} (M_{ij} v_{\sigma_j})_{,j} - \int_{D} (M_{ij} v_{\sigma_j})_{,j} \\
\mathbf{S} &= \int_{D} (M_{ij} v_{\sigma_j})_{,j} - \int_{D} (M_{ij} v_{\sigma_j})_{,j} \\
\mathbf{S} &= \int_{D} (M_{ij} v_{\sigma_j})_{,j} - \int_{D} (M_{ij} v_{\sigma_j})_{,j} \\
\mathbf{S} &= \int_{D} (M_{ij} v_{\sigma_j})_{,j} - \int_{D} (M_{ij} v_{\sigma_j})_{,j} \\
\mathbf{S} &= \int_{D} (M_{ij} v_{\sigma_j})_{,j} - \int_{D} (M_{ij} v_{\sigma_j})_{,j} \\
\mathbf{S} &= \int_{D} (M_{ij} v_{\sigma_j})_{,j} - \int_{D} (M_{ij} v_{\sigma_j})_{,j} \\
\mathbf{S} &= \int_{D} (M_{ij} v_{\sigma_j})_{,j} - \int_{D} (M_{ij} v_{\sigma_j})_{,j} \\
\
$$

Methodology FEM Micropolar Model in COMSOL Using PDE Weak Form

- By using partial differential equation (PDE) modelling in COMSOL instead of traditional FE modelling, no user subroutine is required.
- Various complex geometries, B.C., and loadings can be applied in a user-friendly graphical interface.
- Visualisation of the results is convenient. $-$ (s11*test(ux)+s12*test(uy)+s21*test(vx)+s22*test(vy) $+$ s23*test(vz)+s31*test(wx)+s32*test(wy)+s33*test(wz)) $+$ p1*test(u)+p2*test(v)+p3*test(w)

-(mu11*test(phi1x)+mu12*test(phi1y)+mu13*test(phi1z) +mu21*test(phi2x)+mu22*test(phi2y)+mu23*test(phi2z) +mu31*test(phi3x)+mu32*test(phi3y) + mu33*test(phi3z)) -((s12-s21)*test(phi3)+(s31-s13)*test(phi2) $+(s23-s32)*test(phi1))+q1*test(phi1)+q2*test(phi2)$

+q3*test(phi3)

COMSOL

CONFERENCE 2024 FLORENCE October 22-24

Developing 2D and 3D Micropolar FEM Models for Porous GBR Meshes in Dentistry Applications 16/26

Methodology FEM Micropolar Model in COMSOL / Benchmarks for 2D Model

Methodology FEM Micropolar Model in COMSOL / Benchmarks for 3D Model

Developing 2D and 3D Micropolar FEM Models for Porous GBR Meshes in Dentistry Applications 18/26

Results

Parametric Study for Various Pore Patterns Using COMSOL

Developing 2D and 3D Micropolar FEM Models for Porous GBR Meshes in Dentistry Applications 19/26

Results Parametric Study for Various Pore Patterns Using COMSOL / Parametrisation

COMSOL CONFERENCE 2024 FLORENCE October 22-24

Developing 2D and 3D Micropolar FEM Models for Porous GBR Meshes in Dentistry Applications 20/26

Results Parametric Study for Various Pore Patterns/Materials Using COMSOL

Discussion

Using the Equivalent Mechanical Parameters for Designing GBR Mesh

- **Optimum Design for Porous GBR Meshes:** Nearest mechanical properties to the bone.
- GBR mesh is in contact with the cortical (compact) bone.
- Try to make the material parameters of the GBR mesh consistent with its adjacent bone.
- Experimental estimate of the micropolar parameters of compact bone.
- Finding a configuration with the material parameters close to those reported for compact bone in the literature.

COMSOI

October 22–24

EF & Experimental study of micropolar and couple stress elasticity in compact bone in bending J. Yang & R. Lakes

Discussion

Using the Equivalent Mechanical Parameters for Designing GBR Mesh

- Circular pores, Titanium Alloy
	- \rightarrow Parameters are beyond the required values.
- **Rectangular pores, Titanium Alloy**

 \rightarrow Pore sizes of 0.13 L - 0.15 L and porosity about 0.7, a good agreement for A1122, A1212, A1221 can be achieved.

Discussion

COMSOI

Functionally Graded (FG) Porous Design for GBR Mesh

- GBR meshes are fixed to the mandible bone using biocompatible screws
- At these fixing locations higher stiffness is required. Therefore, smaller pore sizes are more desirable there.
- **Mimicking natural FG structure of the bone**
- FG structure of type O is suggested
- Central part \rightarrow mechanical properties close to cancellous (trabecular) bone while providing a proper diffusion properties.
- Part near fixing areas \rightarrow as near as possible to cortical (compact) bone to provide required loadbearing capacities.

Discussion 3D FG Design for Porous GBR Dental Scaffold

- Currently, metallic GBR sheets are used as a mechanical barrier and bone grafts are inserted into the space created by the barrier.
- **EXE** After the healing period, it is necessary another surgery for removing the GBR mesh.
- To avoid a second surgery, a recent solution is to use biodegradable materials such as polylactic acid (PLA) instead of metallic meshes.
- However, suboptimal mechanical properties of biodegradable materials such as low stiffness and strength have limited their application.

Discussion 3D FG Design for Porous GBR Dental Scaffold

- With the developed framework, an innovative 3D design for GBR meshes is suggested.
- The microstructure evolves from the porous structure at the lower level to the compact structure at the top surface.
- The porous structure can host bio-active agents for stimulating bone regeneration
- While the upper compact surface should provide the required stiffness.
- By implementing our model, the distribution in both the internal structure and the material properties (for instance using bimodal material such as PLA+HA (Hydroxy appetite) or adding nano-reinforcements) can be customized.

3D Design for GBR Dental Scaffold

Developing 2D and 3D Micropolar FEM Models for Porous GBR Meshes in Dentistry Applications

Questions

Developing 2D and 3D Micropolar FEM Models for Porous GBR Meshes in Dentistry Applications 28/26

Results

Effectiveness of Homogenized Micropolar Model

- Comparison of displacement magnitude contours for detailed and homogenized micropolar model.
- **Indentation Test.**
- Predicted values are close to those of the detailed model

