

ANDRITZ GROUP

DEVELOPMENT OF QUENCHING PROCESS RECIPE USING SIMULATION

J. KADKHODAPOUR Product Manager

OCTOBER 2024

ENGINEERED SUCCESS

INSERT CHAPTER OVERVIEW		
01	PROBLEM STATEMENT	
02	DATA FROM JMATPRO	
03	SIMULATION BY COMSOL	
04	RESULT VALIDATION	
05	CONCLUSION	

SYSTEM DESCRIPTION

Simulation problem definition

SYSTEM DESCRIPTION

PROBLEM STATEMENT

9 / ANDRITZ METALS

Distance From Cooling End D (mm)

HARDNESS VALUE IN EN IRS-R-19/93 STANDARD

Test for measurement of hardness

- The difference between extreme hardness values within a batch shall not exceed 30 BHN.
- The microstructure of wheel shall be "Fine Pearlite structure with ASTM grain size 6 or finer."

Tensile strength N/mm ²	Yield Strength N/mm ²	Minimum Elongation Percentage Gauge Length: 5.65 \sqrt{So}	Hardness range BHN	Minimum Impact strength in Joules at +20 °C.
See position 1	l of figure 1			
820 - 940	≥ 520	14	241 to 320	Average value : 17 Individual value: 12

1	PROBLEM STATEMENT	
2	DATA FROM JMATPRO	
3	SIMULATION BY COMSOL	
4	RESULT VALIDATION	
5	CONCLUSION	

INSERT CHAPTER OVERVIEW

SIMULATION FLOW AND REQUIRED DATA

Standard Test for Hardenability

Jominy Test: based on ISO 642 is what we want to focus on and validate by simulations results

CHEMICAL COMPOSITIONS AND HARDENABILITY

Experimental Data for the 1045 Steel

Materials & Design

CrossMark

CHEMICAL COMPOSITIONS AND TTT DIAGRAM

01	PROBLEM STATEMENT
02	DATA FROM JMATPRO
03	SIMULATION BY COMSOL
04	

INSERT CHAPTER OVERVIEW

COMSOL SIMULATION FLOW

14 / ANDRITZ METALS

MODEL BOUNDARY CONDITIONS

15 / ANDRITZ METALS

NSERT CHAPTER OVERVIEW			
01	PROBLEM STATEMENT		
02	DATA FROM JMATPRO		
03	SIMULATION BY COMSOL		
04	RESULT VALIDATION		
05	CONCLUSION		

COMSOL SIMULATION RESULTS

AUSTENATIZING TEMPERATURE EFFECT

18 / ANDRITZ METALS

MARTENSITE PHASE FRACTION

Martensitic microstructures for Distance from quenched end: 1.6 mm. Etching: Nital 3%.

BAINITE PHASE FRACTION

Microstructures for Distance from quenched end: 4.8 mm. Etching: Nital 3%.

PEARLITE PHASE FRACTION

Microstructures for Distance from quenched end: 12.7 mm. Etching: Nital 3%.

FERRITE PHASE FRACTION

Microstructures for Distance from quenched end: 12.7 mm. Etching: Nital 3%.

INSERT CHAPTER OVERVIEW		
01	PROBLEM STATEMENT	-
02	DATA FROM JMATPRO	
03	SIMULATION BY COMSOL	
04	RESULT VALIDATION	
05	CONCLUSION	

CONCLUSION

- The combination of JMatPro and COMSOL can well predict the hardness of material after quenching.
- Some further parametric study is required to be sure about the values of different phases from simulation.
- The validated results can be used to design process for railway quench.

ANDRITZ Stays Hot On Your Trail To Uncover The Coolest Solutions!

ENGINEERED SUCCESS