

UNIVERSITÀ DELLA CALABINA DIPARTIMENTO DI INGEGNERIA INFORMATICA, MODELLISTICA, ELETTRONICA E SISTEMISTICÀ DIMES

MODELING AND SIMULATING THE PASTA DRYING PROCESS VIA COMSOL MULTIPHYSICS

Gaetano Adduci

gaetano.adduci@dimes.unical.it

- Master Degree in Chemical Engineering, DIMES, Università della Calabria, 2019
- PhD Student in Information and Communication Technologies, DIMES, Università della Calabria

COMSOL Conference, Firenze, October 2024

Research Team

Gaetano Adduci - COMSOL Conference, Firenze, October 2024

Gaetano Adduci - COMSOL Conference, Firenze, October 2024

2. Model Structure

- **2 species**, each for each domain (c_v, c_l)
- 2 -Transport of Diluted Speciesmodules, each for each domain (AIR, DOUGH)
- Obtaining vapour concentration at the interface by applying thermodynamic equilibrium condition

$$y_v \cdot p = P_s \cdot a_w$$

 "Transport phenomena in pasta drying: a dough-air double domain advanced modeling", G. Adduci, F. Petrosino, E. Manoli, E. Cardaropoli, G. Coppola, S. Curcio, Journal of Food Engineering 2024, https://doi.org/10.1016/j.jfoodeng.2024.112052

Barilla

ICOMSOL

3. Heat / Mass Transfer

	Heat	Mass
Solid Domain	 ρ_d C_{pd} dT_s/∂t = V · (k_d VT_s) By conduction exclusively Fourier's Law Evaporation only occurs at food surface 	$\frac{\partial c_l}{\partial t} = \nabla \cdot (D_d \nabla c_l)$ • By diffusion exclusively • Fick's Law • Liquid species only • Evaporation only occurs at food surface
Fluid Domain	$\frac{\rho_a C_{pa} \partial T_a}{\partial t} - \nabla \cdot (k_a \nabla T_a) + \rho_a C_{pa} \boldsymbol{u} \nabla T_a = 0$	$\frac{\partial c_v}{\partial t} + \nabla \cdot (-D_a \nabla c_v) + u \nabla c_v = 0$
Z	By both convection and conduction	 By both convection and diffusion Vapour species only

 "Transport phenomena in pasta drying: a dough-air double domain advanced modeling", G. Adduci, F. Petrosino, E. Marohi, E. Cardaropoli, G. Coppola, S. Curcio, Journal of Food Engineering 2024, https://doi.org/10.1016/j.ifoodeng.2024.112052

Gaetano Adduci – COMSOL Conference, Firenze, October 2024

5. Structural Analysis

 $\sigma = \sigma_{el} + \sigma_{inel}$

Elastic Stress (σ_{el})

- Linear Elasticity
- Isotropic Material

 $\sigma_{el} = \sigma_{el,dev} + \sigma_{el,vol} = \|\boldsymbol{C}\| : \epsilon_{el}$

Inelastic Stress (σ_{inel})

- Linear Viscoelasticity
- Generalized Maxwell Model

$$\sigma_{inel} = \sigma_0 + \sigma_{okt} + \sigma_{ve} = \sigma_{ve,dev}$$

Hygroscopic Swelling (ϵ_{hs})

 $\epsilon_{hs} = \beta \cdot M_l \cdot \left(c_l - c_{l,ref} \right)$

 $\{d\epsilon\} = \{d\epsilon_{el}\} + \{d\epsilon_{ve}\} + \{d\epsilon_{hs}\}$

Barilla

- Basic geometry equivalent to a "Tortiglione" pasta
- Better understanding of transport phenomena propagating close to the interface
- Facilitated structural analysis

7. Results (I)

ime=0 min %	Humidity on a Dry Basis [%]
45	
41	1 miles
37	
33	
29	
25	A CALL AND A
21	
17	
13	
9	
5	

NECOMSOL

me=0 min egC	Temperature [°C]	Time=0 min MPa	von Mises Stress [MPa]
3.4		34.5	
8.0		31.0	
2.6		27.6	
7.2		24.1	
1.8		20.7	
6.4	A SESTIMATION OF A SECTION	17.2	
1.0		13.8	
5.6		10.3	
0.2		6.89	
4.8		3.45	
9.4		0.00	
	Number of Elements 12063	 Mesh 	Area 9600 mm ²
(\cdot, \cdot)	Mesh Vertices 6599	Avera	age Element Quality 0.80

Barilla

Gaetano Adduci - COMSOL Conference, Firenze, October 2024

ICOMSOL

Conclusions

- Transport phenomena within a drying chamber were first modelled and then simulated via COMSOL Multiphysics.
- COMSOL implementation of 2 tds interfaces, each for each domain.
- The proposed model totally **disregards** the use of the **transport coefficients** of mass and heat at the interface between the samples to be dried and the drying air.
- Glass transition phenomena were taken into account.
- A structural analysis was conducted.
- Simulations **reflect** the physics governing the process by **closely mirroring** the **validated tests**.

Gaetano Adduci gaetano.adduci@dimes.unical.it

Gerardo Coppola gerardo.coppola@dimes.unical.it

Francesco Petrosino f.petrosino@dimes.unical.

Emily Cardaropoli Emily.Cardaropoli@barilla.com

Sara Guadagnucci Sara.Guadagnucci@barilla.com

Eleonora Manoli Eleonora.Manoli@barilla.com

