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Plasma, the fourth state of matter
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• Rare on Earth at the natural state: aurora borealis, lightning, flame

• Most abundant form of ordinary matter in the Universe: stars, intracluster medium, intergalactic medium

• Plasma contains electrons, ions and neutrals (atoms and molecules)

• Plasma can be artificially generated over a wide range of operating conditions: Low-pressure plasma, 
Atmospheric-pressure plasma, DC discharge, Arc discharge, RF/microwave plasma, …

• 3 categories of plasma: 
o Cold plasmas (low pressure < 1 mbar, ambient temperature ~300 K)
o Thermal plasmas (atmospheric pressure, medium temperature ~103-4 K)
o Fusion plasmas (high pressure ≥ 1 atm, high temperature ~106 K)

The more the particle 
interactions increase, 
the more the challenges 
in simulation are met 



Problem statement

Atmospheric Plasma Modelling Applied For Thermal Plasma Assisted Processes

4/21

[1] M. Moisan and J. Pelletier, Physique des Plasmas Collisionnels - Application aux décharges haute fréquence, EDP Sciences, 2006
[2] B. Hrycak, M. Jasinski and J. Mizeraczyk, Tuning characteristics of cylindrical microwave plasma source operated with argon, nitrogen and 
methane at atmospheric pressure, PRZEGLĄD ELEKTROTECHNICZNY (Electrical Review), ISSN 0033-2097, R. 88 NR 6/2012

• Microwave plasmas (0.3-300GHz) are used in industry for various applications such as in microelectronics or 
decomposition of greenhouse gases

• High-pressure microwave plasmas are still studied in laboratories since they are experimentally characterized by 
specific phenomena of contraction or filamentation [1]

FIGURE 1. Cylindrical microwave plasma source operated 
with Argon at atmospheric pressure [2].
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• In-Plane Microwave Plasma - Application ID: 8664

• Inductively Coupled Plasma (ICP) Torch - Application ID: 18125

• Coaxial to Waveguide Coupling - Application ID: 1863

Overview of the existing models
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RF module + Plasma module

AC/DC module + Plasma module

RF module

→ valid at low pressure, no increase in temperature

→ valid at atmospheric pressure with an increase in temperature, no reaction set is
considered, thermodynamic equilibrium vs T is assumed for the gas mixture properties

→ waveguide-to-coaxial coupling is observed, no plasma



• In that context, a fully-coupled microwave plasma model at atmospheric pressure with COMSOL Multiphysics® is 
a necessary step to optimize the development of such a plasma reactor

• Four blocks of Physics must be considered to study this problem:
o Electromagnetics for the microwave propagation and plasma interaction – RF module
o Fluid dynamics for the gas mixture flow – CFD module
o Heat transfers for the thermodynamic equilibrium – Heat transfer module
o Plasma physics for the electron and heavy particule production – Plasma module

• The expected results are:
o Production of the plasma
o Absorption of the microwave (skin effect)
o Waveguide-to-coaxial coupling
o Increase in the gas temperature

Main goals and expected results
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• Fluid approach:
o Continuum
o Transport equations
o Assumed Maxwellian EEDF

• Limitations:
o Reduced electric field:

o Electron density:

o Debye length:

o Gas pressure:

Simulation of plasmas: Numerical assumptions [3]
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𝐄

𝑁
< 500 Td

1 atm@300K ⇒ 𝑁 ≈ 1025 m−3

1 Td = 10−21 V.m² ⇒ 𝐄 max ≈ 5 MV/m

𝑛𝑒 ≪ 𝑁

𝜆𝐷 ≪ 𝐿

𝑝 > 10−3 mbar

(low degree of ionization)

(apparent charge neutrality)

These assumptions are satisfied in the present case study.

[3] J. Crompton and L. Gritter, Plasma modeling in COMSOL Multiphysics®, AltaSim Technologies - https://www.comsol.fr/video/modeling-
plasmas-in-comsol-multiphysics 



• Electron density transport [4]:

Simulation of plasmas
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𝜕𝑛𝑒
𝜕𝑡

+ 𝛁. 𝚪𝑒 = ด𝑅𝑒
Production rate

Net electron production [5]

𝑅𝑒𝑋 = ±𝑛𝑒𝑛𝑋𝑘𝑒𝑋 𝑘𝑒𝑋 = න
0

+∞

𝜎𝑒𝑋 𝑢𝑒 4𝜋𝑢𝑒
2𝑓 𝑢𝑒 𝑢𝑒𝑑𝑢𝑒

𝑓 𝑢𝑒 = 𝑛𝑒
𝑚𝑒

2𝜋𝑘𝐵𝑇𝑒

3
2

exp −
𝑚𝑒 𝐮𝑒

2

2𝑘𝐵𝑇𝑒

Maxwellian EEDF [1]

Convection of electrons due to fluid motion (u) is neglected
E is the electric field driven by the Maxwell’s equations

𝚪𝑒 = − 𝜇𝑒𝐄 𝑛𝑒
Convective flux

− ∇ 𝐷𝑒𝑛𝑒
Diffusive flux

[1/(m3.s)] 

[1/(m2.s)] 

This is how electron density balance is computed.

[4] COMSOL Help Resources: Plasma Module > User's Guide > Plasma Interfaces > Plasma Reactors Theory
[5] W. Zhang, Recherche numérique et expérimentale sur les propriétés de décharge et les caractéristiques de propagation électromagnétique 
dans les torches à plasma micro-ondes, Toulouse INP, 2019



• Electron energy density transport [6]:

Simulation of plasmas
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𝜕𝑛𝜀
𝜕𝑡

+ 𝛁. 𝚪𝜀 + 𝐄. 𝚪𝜀 = ด𝑆𝑒𝑛
Energy loss/gain

(inelastic collisions)

+ 𝑄

Electron energy transfers [5]

𝚪𝜀 = − 𝜇𝜀𝐄 𝑛𝜀 − ∇ 𝐷𝜀𝑛𝜀

Convection of electrons due to fluid motion (u) is neglected
E is the electric field driven by the Maxwell’s equations
Q is an external heat source driven by the Electron heat source

𝑄 =
1

2
ℜ 𝐣. 𝐄∗ =

𝑛𝑒𝑒
2

𝑚𝑒

𝜈𝑚
𝜈𝑚

2 + 𝜔2

𝐸0
2

2

Heat source for the electrons
(absorbed power density [1])

[W/m3] 

[W/m2] 

This is how microwave power is transferred to the electrons.

[6] COMSOL Help Resources: Plasma Module > User's Guide > The Drift Diffusion Interface > Theory for the Drift Diffusion Interface > Electron 
Transport Theory



• Heavy species mass fraction transport [7]:

Simulation of plasmas
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𝜌
𝜕𝑤𝑘

𝜕𝑡
+ 𝜌 𝐮. 𝛁 𝑤𝑘 = 𝛁. ณ𝐣𝑘

Diffusive flux vector

+ ด𝑅𝑘
Production rate

𝐣𝑘 = ρ 𝑤𝑘𝐕𝑘

[kg/(m3.s)] 

ด𝐕𝑘
Diffusion velocity

for species k

= 𝐷𝑘,𝑚
∇𝑤𝑘

𝑤𝑘
+ 𝐷𝑘,𝑚

∇𝑀𝑛

𝑀𝑛
+ 𝐷𝑘

𝑇
∇𝑇

𝑇
− 𝑧𝑘𝜇𝑘,𝑚𝐄

[kg/(m2.s)] 

[7] COMSOL Help Resources: Plasma  Module > User's Guide > The Heavy Species Transport Interface > Theory for the Heavy Species Transport 
Interface > Multicomponent Diffusion Equations

This is how heavy species mass fraction balance is computed.

[5]



Simulation of plasmas
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This is how reactions in a plasma heat the background gas.

[8] Plasma  Module > User's Guide > The Heavy Species Transport Interface > Theory for the Heavy Species Transport Interface > Thermodynamic 
Properties
[9] E. Goos, A. Burcat and B. Ruscic, “EXTENDED THIRD MILLENIUM IDEAL GAS AND CONDENSED PHASE THERMOCHEMICAL DATABASE,” [Online]. 
Available: http://garfield.chem.elte.hu/Burcat/THERM.DAT

• Thermodynamic properties: Total heat source for heavy species [8]

Enthalpy of reaction in J/mol from the NASA polynomials [9] 

𝑄 =෍

𝑘

𝑄𝑘 +𝑄𝑒,𝑘 =෍

𝑘

−𝐻𝑘𝑟𝑘 + 2
𝑚𝑒

𝑚𝑘

3

2
𝑇𝑒 −

𝑘𝐵𝑇

𝑒
𝐹𝑟𝑘

Electron impact reactions

[W/m3] 

ℎ𝑘 = 𝑅𝑔 𝑎1𝑇 +
𝑎2
2
𝑇2 +

𝑎3
3
𝑇3 +

𝑎4
4
𝑇4 +

𝑎5
5
𝑇5 + 𝑎6 + 𝐹∆ℎ

• Poisson’s equation [4]

𝛁. (𝜀0𝜀𝑟𝐄) = 𝜌𝑞 𝜌𝑞 = 𝑞 ෍

𝑘

𝑍𝑘𝑛𝑘 − 𝑛𝑒

Space charge density

𝜀𝑟 𝜔 = 1 −
𝜔𝑝
2

𝜔2 + 𝜈𝑚
2 − 𝑖

𝜈𝑚
𝜔

𝜔𝑝
2

𝜔2 + 𝜈𝑚
2

This is how plasmas react with an external electric field.

Im(εr) → Absorption is expected in the plasma



Simulation of electromagnetic wave propagation
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• Wave equation:

o In a rectangular waveguide:

𝐸 𝒓, 𝑡 =

𝐸𝑥 = 0

𝐸𝑦 = 𝑖𝜔𝐵0
𝑎

𝜋
sin

𝜋𝑥

𝑎
𝑒−𝑖𝜔𝑡𝑒𝑖𝑘𝑧

𝐸𝑧 = 0

∇2 + 𝜇0𝜇𝑟𝜎
𝜕

𝜕𝑡
+
𝜀𝑟𝜇𝑟
𝑐2

𝜕²

𝜕𝑡²
𝑬 𝒓, 𝑡 = 0 𝑬 𝒓, 𝑡 = 𝑬 𝑥, 𝑦 𝑒−𝑖𝜔𝑡𝑒𝑖𝑘𝑧

𝑘2 = 𝑘10
2 = 𝜇𝜀𝜔2 −

𝜋2

𝑎2
TE10 mode is expected in the 
rectangular waveguide

Magnetic field is not considered here since its interaction with 
the electrons can be neglected (non-magnetized plasma)

This is how EM field propagation is computed.



Simulation of heat transfers
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• Heat equation:

𝜌𝐶𝑝
𝜕

𝜕𝑡
+ 𝐮. 𝛁 𝑇 + 𝛁. ณ𝐪

heat flux
by convection

= ณ𝑄
total heat source

(electrons and heavy species)

[W/m3] 

𝐪 = −𝑘𝛁𝑇 k is the thermal conductivity in W/m/K
Cp is the heat capacity in J/K/kg

Heat capacity in J/mol/K from the NASA polynomials [9] 

𝐶𝑝,𝑘 = 𝑅𝑔 𝑎1 + 𝑎2𝑇 + 𝑎3𝑇
2 + 𝑎4𝑇

3 + 𝑎5𝑇
4

This is how thermal equilibrium is computed.



𝜌
𝜕𝐮

𝜕𝑡
+ 𝜌 𝐮. 𝛁 𝐮 = 𝛁. − ณ𝑝

pressure

𝐈 + ณ𝐊
viscous stress tensor

+ 𝐅

Simulation of fluid dynamics
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• Navier-Stokes equation:

This is how fluid flow is computed.

𝜕𝜌

𝜕𝑡
+ 𝛁. (𝜌𝐮) = 0

[N/m3] 



Experimental set-up (2D model)
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WR975 rectangular waveguide

Cylindrical plasma2D Model design



Results: Waveguide-to-coaxial coupling
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TE10TE10 TE10

TEM

TEM

w/o plasma with plasma



Results: Wave absorption and skin effect
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with plasma

Skin 
effect

Wave
absorption

𝛿: skin depth

𝛿



Results: Gas mixture temperature
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Wave
heating

with plasma



Results: Gas mixture flow velocity
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The change of the thermodynamic and fluid properties 
of the gas mixture with the gas temperature may affect 
the flow velocity.

with plasma



Conclusions
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• A fully-coupled microwave plasma model at atmospheric pressure has been successfully achieved in Ar with 
COMSOL Multiphysics® 

• Waveguide-to-coaxial coupling has been recovered in the presence of a cylindrical plasma crossing a rectangular 
waveguide as expected from the theory of the transmission lines

• Skin effect has been observed as expected from the high-pressure plasma theory

• A rise of the gas mixture temperature has been observed according the thermodynamic properties and the wave-
heating due to the electrons in a resistive plasma



Next steps
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• Next works will focus on:
o The EEDF’s when they are computed from the Boltzmann equation 
o The operating conditions and design
o The gas flow regime at higher mass flow rates
o Other feed gases with more by-products
o Heavy-heavy particle collisions
o Radiative heat transfers

Thank you for your attention


