

Multiphysics Simulation of Battery Cells and Packs for Electric Vehicles

Joseph M. Barakat, Mark S. Oliver & Matthew J. Hancock

Veryst Engineering LLC, Needham, MA, USA

🖂 jbarakat@veryst.com 🖳 <u>www.veryst.com</u>

COMSOL Conference 2024, Boston, MA, USA

Simulation for EV Battery Development

- New battery technologies must satisfy certain targets prior to commercialization:
 - Safety
 - Cost
 - Performance
- Multiphysics simulation can help solve various challenges to meet these targets:
 - Electrochemical
 - Thermal
 - Mechanical

Increasing Battery System Performance

Multiphysics Challenges in Battery Systems

		Electro - Li+ chemical	Thermal	Mechanical
mandalha	Cell Level	Voltage losses Capacity fade and aging Lifetime performance	Heat dissipation	Volume expansion Internal stresses Delamination and cracking
	Module Level	Cell-to-cell state of charge variability Voltage imbalances	Cell-to-cell temperature uniformity Cooling efficiency	Compact form factor Thermal stresses Aging and degradation
	Pack Level	State of charge estimation Over-discharge	Module-to-module temperature uniformity Safety and thermal management	Lightweighting Structural adhesives Structural durability

COMSOL Multiphysics® Simulations

COMSOL Multiphysics[®] Simulations

L AEOQQ

Simulating the Hybrid Pulse Power Li+ Characterization (HPPC) Test

- HPPC test = sequence of charge + discharge pulses to measure battery's life performance.
- Veryst simulated cell voltage response over 13 hours (simulation time << experimental time).

Current

Direct Calculation of Voltage Losses

- Voltage loss is attributed to
 - ohmic resistances
 - activation of electrode kinetics
 - concentration-driven ion transport

 $E_{\text{loss}} = E_{\text{ohm}} + E_{\text{act}} + E_{\text{conc}}$

 Each loss term can be evaluated as COMSOL Variables, allowing direct measure of battery performance.

 Variables 				
Name	Expression			
E_I_neg	intop_neg(-phil_1dx*liion.llx)/i_cell			
E_s_neg	intop_neg(-phis_1dx*liion.lsx)/i_cell			
E_I_sep	intop_sep(-phil_1dx*liion.llx)/i_cell			
E_I_pos	intop_pos(-phil_1dx*liion.llx)/i_cell			
E_s_pos	intop_pos(-phis_1dx*liion.lsx)/i_cell			
E_act_neg	intop_neg(liion.eta_per1*liion.iv_per1)/i_cell			
E_act_pos	intop_pos(liion.eta_per1*liion.iv_per1)/i_cell			
E_conc_particle_neg	intop_neg((liion.Eeq_per1-E_ocp_loc_neg)*liio			
E_conc_electrode_neg	intop_neg((E_ocp_loc_neg-E_ocp_neg)*liion.iv			
E_conc_neg	E_conc_electrode_neg+E_conc_particle_neg			
E_conc_particle_pos	intop_pos((liion.Eeq_per1-E_ocp_loc_pos)*liior			
E_conc_electrode_pos	intop_pos((E_ocp_loc_pos-E_ocp_pos)*liion.iv_			
E_conc_pos	E_conc_electrode_pos+E_conc_particle_pos			
E_neg	E_act_neg+E_I_neg+E_s_neg+E_conc_particle_			
E_pos	E_act_pos+E_I_pos+E_s_pos+E_conc_particle_p			

Results: Charge vs. Discharge Response

Key factors that affect performance are electrode material selection, electrode microstructure, and electrolyte conductivity and stability.

COMSOL Multiphysics[®] Simulations

Simulating a Liquid-Cooled Battery Pack

- Batteries generate significant heat, require active cooling.
- Simulations can predict cooling rates to guide thermal design.
- Veryst simulated temperature distribution in a liquid-cooled battery pack to determine optimal coolant flow rates.

Results: Selecting Flow Rate to Achieve Target Battery Temperature

- Line plots of **maximum** and **minimum** temperature show higher flow improves uniformity.
- Flow rates > 500 ml/min required to maintain temperature < 26°C.
- Key factors that influence cooling:
 - Coolant selection & flow rate
 - Cooling plate selection
 - Thermal adhesive selection

Liquid Flow Rate (ml/min)

COMSOL Multiphysics[®] Simulations

Simulating Adhesive Bonds in Packs ÷

- Adhesives applications in batteries:
 - Cell-to-cell bonding
 - Cell-to-cold plate bonding
 - Sealed enclosures

 Veryst simulated adhesive stresses due to cyclic, torsional loading typically encountered during service.

Results: Adhesive Stress Analysis

12/12/2024

Conclusions

- Multiphysics simulation can help solve electrochemical, thermal, and mechanical problems for battery and automotive developers.
- In this presentation, Veryst used COMSOL Multiphysics[®] to predict...
 - internal resistances in a battery pack over range of useable capacity,
 - optimal coolant flow rates to maintain desired operating temperature,
 - adhesive stresses under cyclic loading that can lead to fatigue debonding.
- Simulations such as these can be used to inform battery design and operating parameters to optimize performance and life behavior.