

A Step towards Biosensors

Numerical Study of Shear-Thinning Droplet Breakup Dynamics at Microfluidics T-Junction using Level-Set Method

<u>Voon-Loong Wong</u>, Kar-Hing Yau, Katerina Loizou, Phei-Li Lau, Richard S. Graham, and Buddhika N. Hewakandamby

OUTLINE

- Introduction to Droplet Formation in Microchannel Network
 - > Research Background
 - > Problem Statements
 - > Research Scope
- Numerical Model Setup
 - ➤ Conservative Level-Set Method
- Numerical Model Validation
- Results and Discussion
- Conclusion
- Acknowledgements

- **Emulsions:** contains a mixture of two immiscible liquids as one phase being dispersed throughout the other phase in small droplets.
- Why are emulsions important?
 In medical or pharmaceutics applications:
 - drug delivery systems
 - Administrating a pharmaceutical compound to achieve therapeutic effect
 - > deliver vaccines and kill microbes
- **Microfluidic systems:** science and technology of systems that process or manipulate small amounts of fluids, using channels with micrometer length scales.

Chemotherapy Drug Delivery System¹

Drug delivery from echogenic perfluorocarbon (PFC)-containing nanoemulsions²

- 1. Adams, T., Yang, C.J., Gress, J., Wimmer, N., and Minerick, A (2012). Retrieved from http://cdn.intechopen.com/pdfs-wm/29689.pdf.
- 2. Mura, S., Nicholas, J., and Couvreur, P. (2013). Nature materials, 12, 991-1003.

- Microfluidic systems: an alternative and versatile platform for microdroplets formation.
- Droplets can be generated via a number of methods.

Breakup in Elongational Strained Flow

Breakup in Co-Flowing Stream

Breakup in Cross-Flowing Stream

Microchannel Emulsification¹

- Scaling analysis and dimensionless numbers are of key importance in designing and physics underlying in microfluidic devices.
- Provide importance of forces, energies, or time scale in presence and lead the way to simplification of complex systems.
- Dimensionless parameters associated with microfluidics are:

$$Re = \frac{\rho UL}{\mu} = \frac{inertial}{viscous}$$

$$Ca = \frac{\mu U}{\sigma} = \frac{\text{viscous}}{\text{interfacial}}$$

$$\boxed{ \text{Re} = \frac{\rho UL}{\mu} = \frac{inertial}{viscous} } \quad \boxed{ Ca = \frac{\mu U}{\sigma} = \frac{viscous}{interfacial} } \quad \boxed{ We = \frac{\rho U^2 L}{\sigma} = \frac{inertial}{interfacial} }$$

Reynolds

Capillary

Weber

$$Wi = \tau_p \gamma = \frac{\text{polymerrelaxation time}}{\text{shear rate time}}$$

$$De = \frac{\tau_p}{\tau_{flow}} = \frac{\text{polymerrelaxation time}}{\text{flow time}}$$

Weissenberg

Deborah @

MICROFLUIDICS T-JUNCTION

- The tip of the dispersed phase enters the main channel.
- The disperse phase entering the T-junction is slowly convected downstream.
- A pressure increase in the continuous phase is expected. This action squeezes the neck of the dispersed thread and droplet is eventually generated¹.

Figure 1: Snapshots of two-dimensional (2D) simulations of w/o droplet breakup process in microchannel (for system: Q=0.05, where continuous phase flow rate, $Q_c=2.00$ ml/hr, and dispersed phase flow rate, $Q_d=0.10$ ml/hr).

1. Glawdel, T., Elbuken, C., and Ren, C.L. (2012). Physical Review, 85, 016323-1-016323-12.

Surface Volume Fraction

2. Garstecki, P., Fuerstman, M.J., Stone, H.A. and Whitesides, G.M. (2006). Lab Chip, 6, 437-446.

MICROFLUIDICS T-JUNCTION

PROBLEM STATEMENTS

Velocity profile for laminar Newtonian flow in a rectangular duct:

Figure 1: Velocity profile for laminar Newtonian flow: (a) Two-dimensional plot with velocity height expression, (b) One-dimensional plot with parabolic velocity profile in rectangular microchannel.

Velocity profile for laminar non-Newtonian shear-thinning flow:

Figure 2: Velocity profile for non-Newtonian shear-thinning flow: (a) Two-dimensional plot with velocity height expression, (b) One-dimensional plot with blunted velocity profile in rectangular microchannel.

PROBLEM STATEMENTS

 Shear-rate profile for laminar non-Newtonian shear-thinning flow in a rectangular duct:

Figure 1: Shear rate profile for Newtonian and non-Newtonian flow measured along the cut line 2D across the flow of dispersed phase in the microfluidic channel (for system: Q=0.05).

- Apparent viscosity of shearthinning fluid decreases as the shear rate increase;
- Velocity profile becomes increasingly blunt as n decreases.

RESEARCH SCOPE

2D LAMINAR TWO-PHASE, LEVEL-SET

Geometry Modelling

- T-shaped configurations
- wc: 221 µm (continuous phase channel width)
- wd: 90 µm (dispersed phase channel width)
- d: 73.5 µm (depth of the channel)

Conservative Level-Set method¹

To describe the interface between two immiscible fluids which is defined by the 0.5 contour of the level set (phase) function (ϕ).

Governing Equations

Incompressible Navier-Stokes (NS) equation:

$$\rho \frac{\partial \mathbf{u}}{\partial t} + \rho (\mathbf{u} \cdot \nabla) \mathbf{u} = \nabla \left[-pI + \eta (\nabla \mathbf{u} + (\nabla \mathbf{u})^T) \right] + F_{st}$$

Continuity equation:

$$\nabla \cdot \mathbf{u} = 0$$

Level-set equation:

$$\frac{\partial \phi}{\partial t} + \mathbf{u} \cdot \nabla \phi = \gamma \nabla \left[\varepsilon \nabla \phi - \phi (1 - \phi) \frac{\nabla \phi}{|\nabla \phi|} \right] \qquad \mathbf{n}_{\Gamma} = \frac{\nabla \phi}{|\nabla \phi|}$$

$$F_{st} = \sigma k \mathbf{n}_{\Gamma} \delta_{sm}$$

$$k = -\nabla \cdot \mathbf{n}_{\Gamma}$$

$$\mathbf{n}_{\Gamma} = \frac{\nabla \phi}{|\nabla \phi|}$$

$$\delta_{sm} = 6 |\phi(1 - \phi)| |\nabla \phi|$$

The fluid properties of density and the dynamic viscosity across the interface

$$\rho = \rho_1 + (\rho_2 - \rho_1)\phi$$
 $\eta = \eta_1 + (\eta_2 - \eta_1)\phi$

Wall Boundary Conditions: Wetting wall

Complete Repulsion: 180° contact angle

Inlet and Outlet Conditions

Inlet: Laminar inflow conditions with specified flow rate (ml/h) ($Q=Q_d/Q_c$)

Outlet: Pressure with no viscous stress (P=0 Pa)

1. Olsson, E., and Kreiss, G. (2005). Journal of Computational Physics, 210, 225-246.

COMSOL Multiphysics 4.3a

MESHED MODEL OF T-JUNCTION

Figure 1: The geometry of microfluidics T-junction composed of five subdomains with prescribed dimensions in COMSOL simulation.

COMSOL Multiphysics 4.3a

SIMULATION SETUP PARAMETERS

Table 1: General settings for the variables and parameter in COMSOL (for system: flow rate ratio, Q: 0.05).

Description	Expression	Unit
Volume Inlet 1*	2	ml/h
Volume Inlet 2*	0.1	ml/h
Effective Droplet Diameter*	d_{eff}	mm
Viscosity Fluid 1	0.068	kg/m.s
Viscosity Fluid 2(Water)	0.00093	kg/m.s
Viscosity Fluid 2 (Non-Newtonian)*	Rheological data	kg/m.s
Infinite shear viscosity*	Rheological data	kg/m.s
Zero shear viscosity*	Rheological data	kg/m.s
Relaxation time constant*	Rheological data	S
Fluid behaviour index*	Rheological data	1
Density Fluid 1	908.9	kg/m³
Density Fluid 2 (Water)	998.2	${\rm kg/m^3}$
Density Fluid 2 (Non-Newtonian)*	Rheological data	
Surface Tension (Water)	0.02074	N/m
Surface Tension (Non-Newtonian)*	Rheological data	
Contact angle	180	degree
Depth of the channel	7.35e ⁻⁵	m

$$d_{eff} = 2 \cdot \sqrt{\frac{1}{\pi} \int_{\Omega} (\phi > 0.5) d\Omega}$$

Sodium Carboxymethylcellulose (CMC)

Figure 1: Normalized shear viscosity plotted against normalized shear rate for a series of CMC shear-thinning solutions with different concentrations.

COMSOL Multiphysics 4.3a

MODEL VALIDATION

Table 1: Comparison of droplet diameter between numerical and experimental model (for system: flow rate ratio, Q: 0.05).

Qc (ml/h)	Qd (ml/h)	Qd/Qc	Error Percentage (%)
2	0.080	0.0400	1.10
2	0.100	0.0500	1.01
2	0.135	0.0675	5.04
2	0.200	0.1000	10.24
2	0.250	0.1250	9.96

Q_c = Continuous Phase Flow Rate Q_d = Dispersed Phase Flow Rate

Discrepancy between experimental and numerical¹:

- Physical and rheological properties were affected by the room temperature fluctuations.
- Syringe pumps induced oscillation of flow rate.
- Difficulties of numerical dissipation in advection step of fluid simulation

1. Wong, V.L.; Loizou, K.; Lau, P.L.; Graham, R.S.; and Hewakandamby, B.N. (2014). Numerical simulations of the effect of rheological parameters on shear-thinning droplet formation. Proceedings of the ASME 4th Joint US-European Fluids Engineering Division Summer Meeting, Chicago, Illinois, August 3-8, 9pp

EFFECT OF DISPERSED PHASE CONCENTRATION

Parameter	Effect of Dispersed Phase Concentration	
Continuous Phase	Olive Oil ($\eta_c = 0.068 \text{ kg/m s}$)	
Dispersed Phase	CMC Shear-Thinning Solution (0.02wt% to 1.20wt%)	

1. Shear-Thinning Effect

- Larger shear-thinning effect will tend to reduce the resulting droplet length for higher viscosity.
- Greater shear-thinning effect exhibit decrease in viscosity upon the application of shear due to the inertial force.

EFFECT OF DISPERSED PHASE CONCENTRATION

2. Viscosity Effect

- Viscosity of a polymer solution depends on its concentration and molecular weight of the dissolved polymer. When the SCMC liquid is more viscous (C*~0.4 wt%), the viscous pressure in dispersed thread becomes more dominant.
- Viscous pressure overcome the opposing capillary pressure > Elongated dispersed thread

EFFECT OF CONTINUOUS PHASE CONCENTRATION

Viscous Shear-Stress, $\tau \propto \eta_{\epsilon}Q_{\epsilon}$

- For lower η_c , viscous shear-stress appear to be minimised and surface tension becomes increasingly dominant on the breakup process \rightarrow larger droplets are generated.
- Increasing the η_c generally gives rise to increasing shear force on penetrating dispersed phase thread → smaller droplets are generated.
- Jetting phenomenon → force the droplet detachment point to move further downstream from the corner of T-junction, resulting in generation of smaller droplets.

EFFECT OF FIXED DISPERSED TO CONTINUOUS VISCOSITY RATIO

Solution	Viscosity (kg/m s) / Carreau-Yası		-Yasuda N	asuda Model Constant		
	ηο (kg/m s)	η∞ (kg/m s)	λ(s)	n	a	
0.02wt% CMC	0.0070	0.0003	0.0400	0.7121	0.9653	
0.04wt% CMC	0.0121	0.0000	0.0325	0.7102	1.6980	
0.06wt% CMC	0.0171	0.0000	0.0256	0.6775	1.3728	
0.08wt% CMC	0.0195	0.0028	0.0143	0.4886	1.1319	
0.10wt% CMC	0.0420	0.0007	0.0572	0.6242	0.4734	
0.20wt% CMC	0.0742	0.0006	0.0041	0.3528	0.3856	
0.40wt% CMC	0.1946	0.0040	0.0138	0.3157	0.5534	
0.60wt% CMC	0.7995	0.0022	0.0147	0.1995	0.3660	
0.80wt% CMC	1.6469	0.0057	0.0515	0.2444	0.4782	
1.00wt% CMC	4.1143	0.0031	0.1604	0.2869	0.5000	
1.20wt% CMC	10.2644	0.0000	0.2069	0.2297	0.4175	

Parameter	Effect of Fixed Dispersed to Continuous Phase Viscosity Ratio
Continuous Phase	Adjusting η_c = zero shear viscosity (η_o) of CMC solution.
Dispersed Phase	CMC Shear-Thinning Solution (0.04wt% to 0.40wt%)

Carreau-Yasuda Model

 $\eta(\dot{\gamma}) = \eta_{\infty} + (\eta_o - \eta_{\infty})[1 + (\lambda_{CY}\dot{\gamma})^a]^{\frac{n-1}{a}}$

 η_0 = zero shear-viscosity η_∞ = infinite shear-viscosity λ_{CY} = relaxation time constant

EFFECT OF FIXED DISPERSED TO CONTINUOUS VISCOSITY RATIO

- Viscosity ratio ($\lambda = \eta_o I \eta_c$) \rightarrow quotient of zero shear viscosity of dispersed phase (η_o) with the viscosity of continuous phase (η_c).
- Changing the CMC concentration= changes the η_{\circ} .
- The η_c is varied to always match the η_o of the dispersed phase. (λ =1)

Viscous Shear-Stress, $\tau \propto \eta_c Q_c$

- The η_c with the identical value of η_o always dominates the breakup process $\rightarrow \eta_c$ is constantly larger than the averaged $\eta_d \rightarrow$ shear-thinning behaviour.
- When η_c >> η_d, the viscous shear stress is a vital distorting force acting on the interface, becomes prevailing→ accelerate the breakup process→ formation of smaller droplets.

EFFECT OF FIXED DISPERSED TO CONTINUOUS VISCOSITY RATIO

CONCLUSION

- Droplet dynamics are governed by:
 - ➤ Viscous shear-stress exerted by the continuous phase.
 - ➤ Shear-thinning properties of dispersed phase.
- d_{eff} decrease as dispersed concentration increases. Theoretical predictions are found to be inconsistent to those previous empirical observations that focused on dispersed fluid with different non-Newtonian characteristic.
- Larger η_c was expected to induce higher viscous shearing force acts on penetrating dispersed phase thread, thus reducing the d_{eff} .
- Considering a fixed λ of 1, The resultant droplet diameter is markedly of decreased by increasing the equivalent viscosity of both phases.

ACKNOWLEDGEMENTS

- University of Nottingham Multiphase Flow Group (United Kingdom and Malaysia) for insightful discussions.
 - Project Supervisors: Dr. Buddhika N. Hewakandamby, Dr. Richard S. Graham, Dr. Phei-Li Lau
 - Research Group: Ms. Katerina Loizou
- This research project was financially supported by Malaysia Intercampus Doctoral Award Scheme (MIDAS).
- SEGi University: Dr. Kar-Hing Yau (COMSOL Paper Publication).

Thank you for your attention. Any Questions??