

Finite Element Analysis to Investigate Electromagnetic Flowmeters of Diverse Cross sectional Shapes

Subhashish Dasgupta Principal Scientist, ABB Corporate Research, Bangalore

Electromagnetic Flowmeter: Working Principal

COMSOL

CONFERENCE

2018 BANGALORE

- Ionic liquid flows across magnetic field
- EMF induced in accordance with Faraday's Law of electromagnetic induction
- Induced EMF is proportional to velocity

Scientific model required to improve understanding of complexities - design improvement

Finite Element Model of Flowmeter

- Tetrahedral meshing scheme
- Mesh resolved in zones of complicacy: Boundary layer
- Mesh independence study performed

COMSOL CONFERENCE 2018 BANGALORE

Finite Element Model of Flowmeter

Governing Equations

Integration provides induced potential

Solvers interaction between velocity and magnetic flux

Influence of Pipe Cross Sectional Shape

- Circular, square and rectangular cross sectional shapes chosen
- Constant area and width
- Varying height

COMSOL

CONFERENCE

2018 BANGALORE

Magnetic Flux Density

COMSOL CONFERENCE 2018 BANGALORE

Influence of Pipe Cross Sectional Shape

Induced Electric Potential

Influence of Pipe Cross Sectional Shape

Triangular shaped flowmeter yields best sensitivity

- Pressure drop 45% higher in triangular shaped flowmeter
- > Conclusion: Circular shaped flowmeter yields overall best performance

Model Validation

2. EM Flowmeter Sensitivity Calculation

COMSOL

CONFERENCE 2018 BANGALORE

- Model validation: 2 step process
- Magnetic flux modeling method validated using literature data (test)
- Flowmeter sensitivity validated against in-house test data
- Overall model predicts with acceptable accuracy: ~ 95%
 Useful predictive tool for industry