Growth of Transient Quantum Mechanical Dirac Wave Functions Thru electric or Magnetic Fields

Anthony J. Kalinowski¹ 1. Consultant/ 4 Greentree Drive, East Lyme, CT and 06333

Introduction: Find the relativistic quantum mechanics steady state wave function $\Psi_m(x,y,z,t)$ as a solution to the Dirac equations with pre-existing magnetic and electric potentials \bar{A} , ϕ . The probability density, ρ , of a particle's location is given by $\rho = \sum |\Psi_m|^2 m = 1..4$

Computational Method: The EM Dirac equations [1] for the behavior of a particle of mass *m* with M=mc/ \hbar , c=light speed, \hbar =Planck's constant, $\bar{\mathbf{A}}=\bar{\mathbf{A}}e/\hbar$,

vs x',y' and is shown for 2 values of electric field strength parameter $\alpha_E = \{.0, -0.04\}$. Figs.(3a-b) compare Exact re Ψ_4 S.S. limit vs FEM @ t'=t/T_D=12 for **E**' field off (i.e. $\alpha_E=0$).

@ t'=12 Fig. (3c) shows the effect of $\mathbf{E}_{\mathbf{X}}'$ turned on where along x', the Ψ_4 wavelength gradually expands opposing $\mathbf{E}_{\mathbf{X}}' \otimes \mathbf{\theta} = \mathbf{0}^{\circ}$ & compresses in-line with $\mathbf{E}_{\mathbf{X}}' \otimes \theta = 180^{\circ}$ while passing thru the **E** field. Fig. (3d) shows the effect of a different β =.75 frequency parameter.

 $\begin{aligned} &\frac{1}{c}\frac{\partial\Psi_{1}}{\partial t} + \frac{\partial\Psi_{4}}{\partial x} - i\frac{\partial\Psi_{4}}{\partial y} + \frac{\partial\Psi_{3}}{\partial z} + i\Psi_{1}(\Phi + M) \\ &+ i(i\mathbf{A}_{y}\Psi_{4} - \mathbf{A}_{z}\Psi_{3} - \mathbf{A}_{x}\Psi_{4}) = 0 \end{aligned}$

 $\frac{1}{c}\frac{\partial \Psi_2}{\partial t} + \frac{\partial \Psi_3}{\partial x} + i\frac{\partial \Psi_3}{\partial y} - \frac{\partial \Psi_4}{\partial z} + i\Psi_2(\Phi + M)$ $+i(A_{z}\Psi_{4}-\mathbf{A}_{x}\Psi_{3}-\check{i}\mathbf{A}_{y}\Psi_{3})=0$

 $\frac{1}{c}\frac{\partial \Psi_{3}}{\partial t} + \frac{\partial \Psi_{2}}{\partial x} - i\frac{\partial \Psi_{2}}{\partial y} + \frac{\partial \Psi_{1}}{\partial z} + i\Psi_{3}(\Phi - M)$ $+i(i\mathbf{A}_{y}\Psi_{2}-\mathbf{A}_{z}\Psi_{1}-\mathbf{A}_{x}\Psi_{2})=0$

 $\frac{1}{c}\frac{\partial \Psi_4}{\partial t} + \frac{\partial \Psi_1}{\partial x} + i\frac{\partial \Psi_1}{\partial y} - \frac{\partial \Psi_2}{\partial z} + i\Psi_4(\Phi - M)$ $+i(\mathbf{A}_{z}\Psi_{2}-\mathbf{A}_{x}\Psi_{1}-i\mathbf{A}_{y}\Psi_{1})=0$

COMSOL'S "General-Form PDE". ⁽¹⁾ When the wave vector **k** is in the xy plane, $\partial \Psi_m / \partial z$ terms drop out and the 1st & 4th eqs. decouple, where Ψ_1, Ψ_4 are solved alone.

 $\Phi = e\phi/c\hbar$, e=charge: are solved with

Results: • Fig.1 <u>PW in Magnetic & Field</u> below validates the $\Psi_n = \Psi_{on} e^{-i\omega' t'}$ end driven Wave Guide COMSOL FEM↔Mathematica *Exact* propagation vs x'=x/

 $-\Lambda \Lambda \Lambda$

 $\begin{array}{ccc} 0 & \mathbf{X'} \rightarrow & 5 \end{array}$

 λ_D and is shown for 3 values of magnetic field strength parameter $\alpha_{\rm B}=\{.0,$ ••• Exact S.S. -0.03,+0.03}.The $\dot{\Lambda}_{im}\Psi_{1} \qquad \alpha_{B} = .00$ $\beta = .95$ magnetic **B**' field $\alpha_{\rm B} = .00$ $\beta_{\rm B} = .95$ effect gradually $\dot{\Lambda}$ re Ψ_{4} $\alpha_{B} = -.03$ $\beta_{B} = .75$ increases the λ'_{A} S.S.--- $\alpha_{B} = .00$ $\beta = .75$ slit detail spatial wave length $\begin{array}{c} \circ \circ \circ \alpha_{\mathsf{B}} = +.03\\ \beta^{\mathsf{B}} = .95 \end{array}$ and p probability density vs +x'.

a) initialize free field

₽.15

@ t'=16

 $\P \Psi_{W}$

0.5**E'** 1**E'**

@ t'=53

e)

s**E**' Legend

c) interference $\downarrow \downarrow$

• Fig.4 <u>2 Slit Demo; Electric E' Field On</u> Particles fired at 2 slits, is a classic quantum mechanics demo, represented by a *free field* $\Psi_n = \Psi_{on} e^{-i(x'k'_D - \omega't')}$ PW wave function incident upon the slits. Figs. (4ad) show the time step transient growth of the $re\Psi_1$ component. Classical bands of constructive interference form while the $\mathbf{E}_{\mathbf{x}}$ field is on except for two differences. The effect of the $\mathbf{E}_{\mathbf{x}}$ field (with electric field strength parameter $\alpha_{\rm E}$ =-0.02) is to: (1) curve the blade like Fig. (4c) bands compared to otherwise

-.15

+y'**< ∱** *

 $\begin{array}{l} \alpha_{\rm E} = -.02\\ \beta^{\rm E} = .75 \end{array}$

enters **E**' field

-40

E' FIELD

b) wave

• Fig.2 <u>PW in Electric E' Field</u> below validates the $\Psi_n = \Psi_{on} e^{-i\omega't'}$ end driven Wave Guide PW COMSOL FEM \rightarrow Mathematica FEM wave propagation vs x'=x/ λ_D

ability density vs +x'. Step \int shaped rise functions \equiv s.

• Fig.3 <u>CYL.Wave in Electric E' Field</u> upper right validates the $\Psi_n = \Psi_{on}(\theta) e^{-i\omega' t'}$ inner radius driven cylindrical wave COMSOL FEM+EXACT wave propagation

d) wave prop- ψ_{inc} Fig.(4d)@t'=72. spokes curve $q q \psi_{w}$

Conclusions: The General-Form PDE option successfully validated the EM transient Dirac Eqs. PW and CW wave solutions that resulted in growing spatial frequency and amplitude traveling waves. The classic 2 slit model produced EM influenced curved constructive interference bands and in some cases halted the forward progress of wave fronts.

References:1. P. Strange, Relativistic <u>Quantum</u> Mech., Camb. Univ. Press 1998

Excerpt from the Proceedings of the 2019 COMSOL Conference in Boston