

Smart Pipeline Structural Health Monitoring of Crack or Fracture Propagation Using Piezoelectric Sensor

Wadie Chalgham

October 3rd, 2019

Motivation:

Economical and Human losses due to Pipeline failures

- Jan 10, 2018: Pipeline in Pearl City, Hawaii ruptured and leaked 500 gallons of fuel oil into residents' yards.
- Jan 14, 2018: Natural gas pipeline ruptured, leading to a fire in Geismar, Louisiana.
- Jan 31, 2018: Gas pipeline exploded & burned in Noble County, Ohio.
- Feb 18, 2018: a 16-inch crude oil pipeline ruptured in Oklahoma and 84,000 gallons of crude were spilled.
- Feb 23, 2018: House in Dallas, Texas exploded, killing a girl, and injuring 4 others in her family due to pipe gas leak.
- June 7, 2018: 36-inch natural gas transmission pipeline exploded and burned in West Virginia.

Literature Review

Anomaly detection techniques

- Non-continuous methods: inspection by drones, smart pigging, or trained dogs [1]
- Continuous methods: fiber optic cable, acoustic sensor, or video monitoring [2]
- Limitations:
- Sensors accuracy, high false alarm redundancy
- Very high installation, operation and maintenance costs [3]
- ✓ What's needed:
- Cheap implementation solution, minimal power consumption
- Continuous data collection & anomaly detection (type + location)

UCL

Objectives

- 1. Detect an anomaly in a pipeline such as a deformation caused by a crack or fracture using a piezoelectric sensor.
- 2. Find a relationship between the magnitude of the deformation of the pipe in the xy, xz, and yz directions and the magnitude of the voltage across the piezoelectric patch.
- 3. Find a relationship between the deformation propagation and the rate of voltage increase.
- 4. Detect the anomaly location.

Simulation Analysis

3D Model of the pipeline

0

PZT with a 20V charge across its ends \rightarrow Induce anomaly

Results

The anomalies are in a form of deformations caused by changing the voltage across the piezoelectric material.

Pipe deformation when 20 V is induced across the PZT patch

Results YZ plane

The purpose of the simulation results analysis is to find a correlation between the deformations in the pipe and the electric potential across the PZT patch.

YZ cross sections of total displacement along the pipeline when 20 V is induced across the PZT patch

YZ Pipe deformation with an increasing electric potential across PZT patch

 \rightarrow linear relationship between the maximum deformation observed at the pipe and the voltage induced through the PZT patch.

Results YZ plane

Linear relationship between Pipe deformation and Electric potential

UCLA

Results

XY Pipe deformation with an increasing electric potential across PZT patch

XZ Pipe deformation with an increasing electric potential across PZT patch

UCLA

Results

Line along which data are collected to plot XZ deformations Plot of XZ deformations when 20 V is induced across the PZT patch

Conclusion

Anomaly detection using piezoelectric sensors is possible

- A crack was simulated across the surface of the pipe.
- Linear relationships between the voltage across the PZT patch and the deformations.
- Linear relationships between the rate of voltage increase and the deformation propagation.
- Results can act as baseline measurement to enhance structural health monitoring of the pipeline by detecting the horizontal location of anomalies with a better precision.

Future work

Combine the results found in this paper with machine learning or statistical analysis
Generate an algorithm to detect anomalies, their type and location

- Add another piezoelectric sensor & induce high frequency waves between sensors
- \rightarrow Detect anomalies with higher precision

References

[1] F. Karray, A. Garcia-Ortiz, M.W. Jmal, A.M. Obeid, M. Abid, "EARNPIPE: A Testbed for Smart Water Pipeline Monitoring Using Wireless Sensor Network," *Procedia Computer Science*, 2016.

[2] L. Boaz, S. Kaijage, R. Sinde, "An overview of pipeline leak detection and location systems," *Pan African International Conference on Information Science, Computing and Telecommunications*, 2014.

[3] W.K. Muhlbauer, "Pipeline risk management manual: ideas, techniques, and resources," *3rd ed, Elsevier, Amsterdam*, 2004.

[4] G. Park, H. H. Cudney, and D. J. Inman, "Feasibility of using impedance-based damage assessment for pipeline structures," *Earthq. Eng. Struct. Dyn.*, vol. 30, no. 10, pp. 1463–1474, Oct. 2001.

[5] S. Choi, B. Song, R. Ha, and H. Cha, "Energy-Aware Pipeline Monitoring System Using Piezoelectric Sensor," *IEEE Sens. J.*, vol. 12, no. 6, pp. 1695–1702, Jun. 2012.

[6] X. P. Qing *et al.*, "Development of a real-time active pipeline integrity detection system," *Smart Mater. Struct.*, vol. 18, no. 11, p. 115010, Nov. 2009.

[7] J. Zhu, L. Ren, S.-C. Ho, Z. Jia, and G. Song, "Gas pipeline leakage detection based on PZT sensors," Smart Mater. Struct., vol. 26, no. 2, p. 025022, 2017.

[8] A.M. Sadeghioon, N. Metje, D.N. Chapman, C.J. Anthony, "SmartPipes: Smart Wireless Sensor Networks for Leak Detection in Water Pipelines," *Journal of Sensor and Actuator Networks*, 2014.

UCL

Thank You

Any Questions?

Wadie Chalgham

October 3rd , 2019

·· UCLA ··