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NCSA Industry – Goal: 6 months ahead of competition

Industry Dedicated

• Technical Teams

• HPC Resources

• Business Leadership and Project Management

Tradition

• Industry as a part of NCSA’s mission for > 30 years

Culture

• Work at industrial pace with NDAs

• Deliver on time and under budget

Largest Industrial HPC 
Program in the World



NCSA Industry – Technical Expertise

• Modeling and Simulation

• Bioinformatics and Genomics

• Big Data Analytics, GIS, and AI

• Code Profiling and Optimization

• Rapid User Support and HPC Training

• Cyber Infrastructure and Security

• Visualization

• Much more at NCSA and the University of Illinois



iForge – The HPC Environment for Industry

• Latest and best
– Computing (Intel/Skylake 192-256 GB)

– In-memory big data analytics (SPARK)

– GPU driven AI technologies (V100)

• 99% uptime and live upgrades

• Development and production workhorse

• Rapid user support and advanced consulting

• Built exclusively for Industry’s applications      
and workflows
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Reduced model of blood flow – Pressure impulse traveling through flexible tube

R = 5 mm

l = 50 mm

t = 1 

mm

Fluid model

• Incompressible viscous flow 

• Density = 10-3 [g/mm3], Kinematic viscosity = 3 [mm2/s]

• Initially at rest

• Pinlet= 1333 [Pa] for t < 0.003 [s] and zero outlet pressure

Structure model

• Venant-Kirchhoff hyperelastic structure

• Young’s modulus = 3x105 [Pa], Poisson’s ratio = 0.3

• Initially undeformed 

• Fixed at both ends
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Typical 
modeling 

challenges

• Strong physics couplings

• Material and geometric nonlinearities

• Large model sizes

Typical 
computational 

concerns

• Solution time

• Memory footprint

• Numerical robustness

Two-way FSI 
solution 
options

• Multiphysics modeling approach

▪ Monolithic (Fully-coupled)

▪ Partitioned (Segregated)

• Linear system solvers

▪ Direct (PARDISO, MUMPS, etc.)

▪ Iterative (GMG, AMG, etc.)

Overview of key modeling considerations

Goal: Quantify computational tradeoffs in FSI simulations  



7

Reference point

Effect of FSI solution options on convergence and accuracy 

Multiphysics modeling approach: Monolithic (Fully-coupled), Partitioned (Segregated)

Linear system solver: Direct (PARDISO, MUMPS), Iterative (AMG, GMG)
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CPU cores

Monolithic + Direct (PARDISO)

1 MPI x 20 threads per node

2 MPI x 10 threads per node

4 MPI x 5 threads per node

Optimum hybrid computing configuration (MPI ranks x OpenMP threads)?

Problem size: 400k tetrahedral elements; Hardware specifications: Intel Skylake compute nodes with 192 GB RAM

2 MPI ranks x 10 OpenMP threads per node is optimum for a combined solution time and memory footprint consideration
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Performance scaling of linear system solvers (PARDISO, MUMPS, AMG)

Direct solvers: Memory footprint prohibitive for large problems, steep performance degradation when out-of-core

Iterative solvers: Not suitable for problems with high condition number and strong coupling effects
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Segregated Monolithic

Monolithic vs. Segregated approach – scaling of solution time
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Monolithic vs. Segregated approach – scaling of memory footprint
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Effect of problem size on performance scaling

Monolithic + PARDISO: Most scalable in terms of solution time

Segregated + AMG: Lowest memory footprint
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Concluding remarks

❑ Grouping of highly coupled variables is needed for the segregated approach

❑ GMG solver failed to converge  

❑ Memory footprint is critical for the performance of direct solvers

❑ PARDISO is the most scalable solver in terms of solution time

❑ More scale helps with more physics

❑ Computational efficiency is critical in high throughput parameter sweeps

❑ Simulation challenges are beyond the capabilities of today’s S/W and H/W
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