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Abstract 

This contribution aims to demonstrate a method of 
application of COMSOL to solve a multiscale 
problem whose essential feature is a kink with an 
unknown configuration. The search for its shape 
and details of its structure is the main task of the 
study.  

This paper demonstrates the approach within the 
example of a stationary partial differential equation 
with strong nonlinearity. Its solution that we look 
for is close to zero far from the origin of coordinates 
and close to a constant value within some region 
not far from the origin. A kink of a complex, 
unknown configuration separates these two 
domains. The lateral size of the area with the 
nonzero solution is about a few hundred times 
larger than the kink width. The latter determines 
the multiscale nature of this problem. 

An approach is proposed using the (i) relaxation 
method. It consists in passing from the static 
equation - to the dynamic one. The relaxation 
method makes use of the fact that the solution of 
the dynamic equation converges to a fixed point. 
The latter represents the solution of the static 
equation. Thus for a large enough solution time, t, 
one can expect to be close to the solution of the 
static equation.  

The relaxation method itself is, however, not 
enough. To resolve the kink region, one should 
supply it with (ii) the Adaptive Mesh Refinement 
feature switched on. The Adaptive Mesh 
Refinement can be tuned to build several meshes 
during the Study such that in the kink region, each 
next mesh is denser than the previous one while 
leaving the mesh coarse away from the kink.  

One needs to supplement this by (iii) generating 
multiple Studies, each next of them taking the 
result of the previous one as the initial condition, 
each of them possessing the Adaptive Mesh 
Refinement feature. 

This strategy brings one to a successful solution of 
the problem.    

Introduction 

In many brittle materials, high stress forming at the 
crack tip during the solid loading gives rise to a 
phase transformation. The latter takes place at the 
vicinity of the crack tip. Figure 1 shows an example 
of such a local phase transformation at the crack tip 
in a martensitic-austenitic alloy. 

 

Figure 1. Local phase transitions (b, c) at both tips of the 

crack (a)  

An order parameter, u=u(x,y), can describe the 
phase transformation. The latter is equal to zero in 
the initial phase and is unequal to zero in the 
transformed phase.  The order parameter obeys an 
equation 

𝐹(𝑢, 𝑎, 𝑣) = ∆𝑢 + 𝑣
𝜕𝑢

𝜕𝑥
− [𝑎 − 𝑈(𝑥, 𝑦)]𝑢 + 

+𝑢3 − 𝑢5 = 0                                                              (1) 

where the function  

𝑈(𝑥, 𝑦) =
√√𝑥2+𝑦2+𝑥

√𝑥2+𝑦2
                                               (2)  

describes the influence of the crack tip stress on the 
order parameter. In equation (1), a and v are  
parameters. All the coordinates, parameters, and 
dependent variable are dimensionless.  

This equation can be solved numerically. One of 
such solutions we show in Fig. 2. The distribution, 
u(x,y), is very close to a kink. It exhibits a very gently 
sloping roof and a boundary where the order 
parameter dramatically drops to zero from the roof 
value. One can see that the dimension of the 
transformed area is between a few hundred 
dimensionless units, while the width of the kink is 
about a few such units — one faces, thus, with a 
multiscale problem.  
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On the other hand, since the shape of the solution 

is clear, the main question the solution should 

answer is what is the configuration of the kink.    

This paper describes the approach enabling one to 

find solutions possessing kinks of nonlinear 

equations like Eq. (1). 

The Relaxation Method 

The solution describing the process zone shows up 

in the vicinity of the crack tip. Natural boundary 

condition describing such a local solution is 𝑢(∞) =

0. To solve this problem numerically, one separates 

 

Figure 2. The order parameter, u(x,y) obtained by the 

COMSOL simulation. The red lines schematically show the 

position of the crack tip. 

domain, Ω, which is considerably larger than the 
size of the zone within the kink, such that at its 
boundary, 𝜕Ω, the order parameter is very small. 
Let us impose the Dirichlet condition at 𝜕Ω: 
𝑢(𝑥, 𝑦)|∂Ω = 0.  

One can, further, see that the equation of state (1) 
is highly nonlinear. Also, u=0 gives the solution to 

this equation 𝐹(0, 𝑎) = 0. One is tempted to solve 

equation (1) in the domain Ω with the boundary 
condition 𝑢(𝑥, 𝑦)|∂Ω = 0. In this case, however, 
COMSOL always returns the trivial solution, 
u(x,y)=0. The latter takes place because the trivial 
solution is one of the solutions to equation (1). 

The workaround is to start from some arbitrary 
initial distribution, 𝑢(𝑥, 𝑦) ≠ 0, and to make 
iterations successively converging to the desired 
nontrivial solution of (1).  

One can most easily do such a procedure by the so-
called, relaxation method. Instead of the equation  
(1), one takes the time-dependent equation 

∂𝑢(𝑥,𝑦,𝑡)

∂𝑡
− 𝐹[𝑢(𝑥, 𝑦, 𝑡), 𝑎] = 0                                         (3) 

Here t is an auxiliary parameter, a pseudo-time. The 
method is based on the observation that the 
solution, u(x,y,t), of Eq. (3) converges to the 

solution, u(x,y), of the stationary equation with 
t →  as 𝑢(𝑥, 𝑦, ∞) = 𝑢(𝑥, 𝑦). For this reason, 

instead of the stationary problem, here we will 
solve a time-dependent equation for 𝑢 = 𝑢(𝑥, 𝑦, 𝑡) 

𝜕𝑢

𝜕𝑡
= 𝛥𝑢 − [𝑎 − 𝑈(𝑥, 𝑦)]𝑢 + 𝑢3 − 𝑢5         (4)  

with the initial condition 𝑢(𝑥, 𝑦, 0) = 𝑢0(𝑥, 𝑦) ≠ 0, 

and zero Dirichlet boundary conditions described 
above. We, further, look for a solution at a high 
value of time, t.  

More details on the relaxation method in 
application to nonlinear PDEs one finds in the paper 
[1].  

Solution Method 

Step 1 

Let us start the Comsol 2D model and the Time-
dependent solution template. Let us define the 
parameters a=0.23, v=0.2, T=1000 and deltaT=100. 
The two latter parameters define the time stepping.   

Let us further introduce a smooth rectangle, rect1 
provided by the COMSOL standard analytical 
functions. It should have a lower limit at 0 and the 
upper one at 200. One will use it as the initial 
condition. 

The domain represents a rectangle whose size 
exceeds the dimension of the expected solution. 
One determines the proper size by trial and error. 
The equation has the mirror symmetry 𝑦 → −𝑦 
enabling one to only study the problem at y>0. Zero 
Dirichlet boundary conditions are fixed on its three 
boundaries, while at y=0 (the mirror plane) one 
requires the no-flux condition. The equation is 
comfortable to define in a general form with the 

standard , ea=0, da =1, and the free term f: 

𝑓 = 𝑣 ∗ 𝑢𝑥 − (𝑎 −
𝑠𝑞𝑟𝑡(𝑠𝑞𝑟𝑡(𝑥2 + 𝑦2) + 𝑥)

𝑠𝑞𝑟𝑡(𝑥2 + 𝑦2 + 𝑏)
) 𝑢 + 𝑢^3

− 𝑢^5 

Where b=0.0001 is a regularization constant. 
Finally, one defines the initial distribution using the 
smooth rectangle introduced earlier, by fixing  

“Initial value for u “→rect1(x^2+y^2) in the “Model 
1/General Form/ Initial values > Settings/Initial 
values.” 

The next step is to make the initial mesh. The latter 
should be coarse enough. Then we will gradually 
refine it such that it only becomes finer in the places 
where the gradient of the solution is steep, while 
otherwise, it stays coarse. Let us choose Physics-
controlled/Normal mesh (Fig. 3). 
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The next step is the Study. The time-stepping we 

define as the range(0,deltaT,T) meaning that the 

simulation runs from 0 till T and each deltaT the 

solution is stored. 

 

Figure 3. The initial Physics-Controlled/Normal mesh. 

It is essential to check the Adaptive Mesh 
Refinement (AMR) under Study Extensions (Fig. 4). 

 

Figure 4. One should check the Adaptive mesh 
refinement checkbox 

After one has done this, one can fine-tune the AMR. 
To do this, let us right-click “Model Builder/Study” 
and select “Show Default Solver” from the drop-
down menu. This operation makes a node 
“Adaptive Mesh Refinement”  visible under 
“Study/Solver Configurations/ Solution/ Time-
Dependent Solver.” Let us click the AMR node and 
vary its parameters in the Settings page. The best 
values of these parameters are problem-specific. 
One can play with them and choose the 
combination optimal for the equation in question. 
For the problem considered here, the optimal AMR 
parameters found by trial and error one finds in Fig. 
5. Please pay attention that the error indicator is 
the absolute value of the solution gradient. 

Decreasing it ten-fold makes the AMR more 
sensitive.  

 

Figure 5. Fine-tuning of the Adaptive Mesh Refinement 

Now, let us solve the problem and look at the 
meshes formed after the solution. In Figure 6, we 
displayed refined Mesh 11. This refinement is, 
however, still much too rough. Therefore, one 
needs to repeat the procedure. 

 

Figure 6. The refined Mesh 11 after Study 1 

Step 2 

Let us make a new study. Go to the “Ribbon/Add 
Study” and choose “Time-Dependent.” Now it is 
important that in this second study, the time-
stepping parameters are as follows: 
range(T,deltaT,2*T). It is further important that 
COMSOL gets the instruction to take the previous 
solution as the initial value and start with the 
solution corresponding to the very last moment of 
the previous study. 

Further, one should select the very last mesh (in this 
case, Mesh 11) as the starting one. Figure 7 shows 
these settings. As in the previous case, one checks 
the checkbox “Study Extensions/Adaptive mesh 
refinement” visualizes the node  “Adaptive mesh 
refinement” and fine-tunes its parameters. We 
already described this fine-tuning in Step 1, and one 
should tune them analogously. All these settings 
are important features of the approach.  
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Let us now compute. The 2D plot of the result we 
displayed in Fig. 8.  

Let us now check the convergence in “Results/ 
DerivedValues/SurfaceIntegration,” where we 
choose the whole Domain 1 and “Study 2/Refined 
mesh solution” as the Data set to see the result for 
the second study. Let us integrate the gradient of 

the solution squared over the domain : 

𝐽 = ∫(∇𝑢)2 𝑑Ω 

It is a very sensitive convergence indicator for the 
problems with the kink. We can evaluate it for all 
times saved during the study and plot the resulting 
table (Fig. 9). One can see that the solution still 
exhibits considerable growth. The latter indicates 
that it is still far from the fixed point, u(x,y). The 
same conclusion one can make looking at the 
boundary configuration of the solution. Indeed, it 
exhibits sharp corners and straight portions of the 
boundary, while in the correct solution one expects 
a smooth, continuous boundary. Such observations 
mean that one should repeat the procedure more 
times. 

 

Figure 7. The settings for Study 2 

 

Figure 8. 2D Plot Group/Surface for Study 2/Refined 
Mesh Solution 

The last step 

The number of studies required for the ultimate 
convergence is problem-specific. Moreover, it also 
depends on the values of parameters (in the 
present case – on a and v).  One finds this 
dependence especially manifested if the nonlinear 
equation in question exhibits a bifurcation. It is this 
case that takes place with Eq. (1). As soon as the 
parameter a is close to its bifurcation value, one 
needed up to a few hundreds of Studies to achieve 
the convergence. In contrast, far from this value, 
five to ten studies were enough.  

Now, let us have a look at the final stage of the 
solution. In the present case (a=0.23 and v=0.2), the  

 

Figure 9. The convergence indicator of the solution, J, 
versus the pseudo-time, t. 

solution has been repeated 23 times until the 
boundary became smooth, the distribution, u(x,y), 
stopped to vary in its size, and the indicator 
exhibited a convergence. The coincidence of the 
numbers a=0.23 with the 23 Studies is occasional. 
One can see the 2D plot of the solution of Study 23 
in Fig. 10. 
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Figure 10. 2D Plot Group/Surface for Study 23 

The solution exhibits a smooth boundary, which is 
one of the indicators showing that it is close to the 
correct one.  

In the course of the solution, Comsol has built 211 
meshes. The view of the last mesh one finds in Fig. 
11. One can see that it is very dense at the kink and 
sparse otherwise.  

Simultaneously, the integral of the square of the 
gradient, 𝑢𝑥^2 + 𝑢𝑦^2 over the domain finally 
reaches the horizontal asymptotics (Fig. 12). All 
these properties indicate that the solution of the 
dynamic equation is already close to the desired 
solution of the static one. 

 

 

Figure 11. The form of the last mesh Nr. 211 

 

Figure 12. The convergence indicator reaches horizontal 
asymptotics during the Study 23 

Summary 

To summarize, COMSOL enables one to combine 
the relaxation method with the Adaptive Mesh 
Refinement. Applying multiple studies, one 
achieves a good convergence of the solution of a 
highly nonlinear problem exhibiting a steep kink. 
The penalty is the large time required for multiple 
simulations. 
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