

Finite Element Analysis of Induction Heating Process Design for SMART Foundry 2020

(SMART=Sustainable Metal casting using Advanced Research and Technology)

Presented By: Himanshu Singh PhD Scholar VNIT Nagpur

Modules of the project

- 1. Casting design and simulation
- 2. Automatic mold fabrication
- 3. Efficient melting and direct pouring
- 4. Metal matrix processing

5. Data sensing, analytics and optimization

3D Scanning for Reverse Engineering

Creation of 3D models without CAD: Rapid manufacture of spare parts

3D Scanner

 \square

SMART Sustainable Metalcasting by Advanced Research and

Cloud of points

CAD model

Existing objects can be scanned to create a Cloud of Points, which are 'stitched' into a CAD model.

This is useful to 'reverse engineer' parts for which drawings may not exist, like an old car or valuable equipment.

Tripod-mounted systems scanning rotating objects give less than 0.1% error.

Hand-held and phone based scanning is less accurate, but costs much less, making it widely accessible.

Steps:

Area to be Explored

Melting + Pouring

Module : Melting and Direct Casting

Induction Furnace @ VNIT Nagpur

Fig. Induction melting with direct pouring and data acquisition

Induction Furnace CAD Model

Figure 2 Bottom Pouring Crucible

Figure 3 Crucible with Tapping Rod

COMSOL

- Numerical model Validation
- Main features of the model
- Geometry & Meshing
- Governing equations and Boundary Conditions
- Numerical results
- Conclusions

It is a high temperature vacuum distillation furnace used for recovery of heavy metals

Functions :

Melt and consolidate of heavy metals
distill the volatile metals and salts
operate in inert containment box
heat reasonably fast while being capable of holding temperature

COMSOL Modules

Geometry in COMSOL 2D Axis Symmetric

Fine Meshing

Temperature Profile

Temperture Profile

Conclusions

- > Transient Thermal analysis of mock-up induction furnace is being carried out in
- this study which is highly important for operation and control of the process.
- Preliminary model : it will aid in improving the design.
- The results of this study have shown that the temperature of the crucible rises to 1500 oC in 2 hours of heating time at frequency of 8 kHz and current of 400 A. copper is likely to melt under these conditions.
- The studies reveal that copper-liner is effective in reducing the electromagnetic coupling between the coil and the vessel and thus prevents vessel from getting heated up by this effect.
- The coil temperatures are above the acceptable temperature of copper material, hence different cooling technique is to be adopted.
- These results will be compared with the experimental results which will be obtained during the operation of mock up facility.

3D CAD and Simulation

3D Printing

Melting + Pouring

Cast Part

Plastic Pattern

No-Bake Molding

Fig. Low cost rapid manufacturing methodology developed with industry partners

Casting

Data Sensing and Analytics

Casting Design and Simulation

3D Printing of Casting Patterns

Automatic manufacture of tooling for short production runs

3D Plastic Printer

ProtoCentre 999

Tooling (pattern / die / mold) can be manufactured by any of these routes:

+ Additive (3D Printing): fast

- Subtractive (Machining): accurate

~ Formative (Casting): economical

Hybrid route combining all three, is useful for rapid manufacture of plastic or metal patterns with high accuracy yet low cost.

Sand casting

Metal part or pattern

El parte

Tabletop Casting (Melting + Pouring)

Induction melting and direct pouring into mould: Compact, energy-efficient, safe

Sand Mold

Speed: CAD to First Part in 8 hours Subsequently, 1 part/ hour/ mould

Cost: 2-5% of Metal 3D Printing

Quality: Direct pouring minimizes • Air contact:

> Less gas pickup (gas porosity) Less oxidation (slag inclusion)

Temperature drop
 Less fluidity issues (cold shut)

Casting with thermocouples

20 40 60

Cooling curves

00

Cooling curve is a signature of the alloy composition and processing. It helps predict the mechanical properties of casting.

hsingha01@hotmail.c

640 620

600 ·

560 -

640

520

500

THANK YOU

