Investigation of Atmospheric Plasma Processing in Dielectric Barrier Discharge

P. Murugesan¹, J. A. Moses¹ & C. Anandharamakrishnan¹
1. Computational Modeling and Nanoscale Processing Unit,
Indian Institute of Food Processing Technology (IIFPT), Thanjavur, Tamil Nadu

INTRODUCTION

RESULTS

Effect of Discharge Gap

Goal: Investigation of plasma parameters in DBD reactor at different discharge gap and dielectric material

COMPUTATIONAL METHODS:

Model equations

Figure 3. Plot of Argon mass fraction (a) $0.5*10^{-4}$ m; (c) $6*10^{-4}$ m and Total capacitive power deposition (b) $0.5*10^{-4}$ m; (d) $6*10^{-4}$ m

Type of material

$$\frac{\partial n_e}{\partial t} + \nabla \Gamma_e = R_e - (u, \nabla)n_e$$
$$\frac{\partial n_e}{\partial t} + \nabla \Gamma_e + E \Gamma_e = S_{en} - (u, \nabla)n_e + (Q + Q_{gen})/c$$
$$\Gamma_e = -(\mu_{en}, E)n_e - D_{en}, \nabla n_e$$

 n_e – electron density; n_{ϵ} – electron energy density ; Γ -particle flux density; S -source and lose items of particles; μ_e – electron mobility; μ_e – electron mobility; μ_{ϵ} – electron energy mobility; D-diffusion coefficient; E-electric field.

Geometrical condition

Variable	Value	Units
Length	0.1	m
Width	0.02	m
Area	0.002	m ²

Figure 4. Plot of Argon mass fraction at different types of dielectric material (a) Aluminum; (b) Silicon; (c) Acrylic plastic

CONCLUSIONS:

- Power consumption was less in small discharge gap
- Generated plasma is unstable with increasing the discharge gap.

Maximum value of mass fraction of Argon is observed in silicon than others.

REFERENCES:

- 1. Hosseinpour, M. and Zendehnam, A. J, Study of an argon dielectric barrier discharge reactor with atmospheric pressure for material treatment, Theor Appl Phys ,12, 271-291 (2018).
- 2. Bose, A. Narakathu, B. Bazuin, B and Atashbar M, Modelling and Simulation of Microplasma Discharg Device for Sterilization Applications, Proceedings , 2, 948 (2018)
- 3. Divya Deepak , G,. Joshi , N.K and Prakash R, Model analysis and electrical characterization of atmospheric pressure cold plasma jet in pin electrode configuration, AIP Advances 8, 055321 (2018).

ACKNOWLEDGEMENTS

This work was financially supported by Defense Research and Development Organization (DRDO).

Excerpt from the Proceedings of the 2019 COMSOL Conference in Bangalore