
INTRODUCTION

• Biofilms persist in various environments due to their protective matrix
that neutralizes antimicrobials [1,2].

• The specific affinity of bio-based carriers can promote biofilm
inactivation by targeted delivery of antimicrobials [3].

• Transport phenomena including reaction kinetics can predict the
improved inactivation of biofilms using bio-carriers.

FC: free chlorine (antimicrobial) YMP: yeast microparticle (bio-carrier)

RESULTS

• FC was rapidly depleted (→ 0) by organic-rich wash water but the use of
YMPs reduced FC loss, increasing the contact time with target bacteria.

•

• 5.5 log CFU/ml bacteria survived in FC only model after 1 h while the
biofilm was completely inactivated within 10 min in FC/YMP model.

• The affinity of YMPs for binding biofilms was a dominant factor to
improve the inactivation of bacteria in biofilms.

• The simulated biofilm inactivation was experimentally validated by
using two types of YMPs with different binding affinities.

CONCLUSIONS

• The binding affinity of bio-carriers to a biofilm increased the local mass
transfer of antimicrobials into the biofilm.

• Controlled release of antimicrobials from bio-carriers reduced
nonspecific reactions with organic matter in the wash water.

• Overall, this study illustrates the potential of a multiphysics modeling
approach to enable the rational design of antimicrobial delivery
systems for the treatment of biofilms.
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Figure 1. Transport processes of FC by using YMPs for biofilm inactivation 
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Table 2. Reaction rate parameters

Value Units

𝑘0 2.88e-5 s-1

𝑘1 8.97e-3 m3kg-1s-1

𝑘2 12.5 m3kg-1s-1

𝑘b 4.40e-4 s-1

𝑘r1 1.06e-5 s-1

𝑘r2 4.13e-3 s-1

COMPUTATIONAL METHODS

Figure 4. Simulated biofilm inactivation at different locations for each system

Figure 5. Experimental validation: Biofilm inactivation by FC encapsulated in two 
types of YMPs with different binding affinities 

Figure 3. Simulated spatiotemporal FC distribution for each system

Figure 2. A biofilm inactivation system in laboratory settings: (a) 3D geometry,
(b) radial cross-section with boundary conditions

Table 1. List of variables

𝐶 FC [kg/m3]
𝐶𝑌 FC in a YMP [kg/kg]
𝑁 Bacteria [kg/m3]
𝑂 Organic matter [kg/m3]
𝑌 Free YMP [kg/m3]
𝑌𝐵 Bound YMP [kg/m2]
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