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Abstract 

In this work we report on an investigation of the effect of the 

magnetic particles size on the effective macroscopic behavior 

of magnetorheological elastomers (MREs). MREs are a class 

of smart materials known for their tunable deformation. They 

are composite materials which consist of magnetically 

permeable particles in a non-magnetic polymeric matrix. 

When subjected to an external magnetic field, MREs respond 

by changing their stiffness and damping properties 

accordingly. The property of MRE to change their mechanical 

properties is widely known as the magnetorheological effect. 

Several factors significantly influence the magnetorheological 

effect such as the polymer matrix, particles-volume fraction, 

properties, and size of the magnetic particles. In this study, 

using finite element simulation we determine the correlation 

between the latter and the macroscopic behavior of MREs. 

Based on continuum formulation theory, the constitutive and 

geometric properties on the microscale are considered to 

predict the composite’s macroscopic behavior by means of a 

computational homogenization. Using COMSOL Multiphysics 

software, the magnetic and mechanical fields were defined and 

resolved. For a constant particle-volume fraction (φ=20%) and 

varying mean particle sizes (Փ=5, 10, 20 and 30 µm), a two-

dimensional representative volume element (RVE) was 

developed, and applying periodic boundary conditions the 

simulations were performed for isotropic (unaligned) and 

anisotropic (aligned) microstructures. From the results, the 

particle size is found to have a significant effect in the 

mechanical response of the MRE materials. More specifically, 

the magneto-induced strain effect is observed to decrease with 

increase in particle sizes. Also, increasing the particle sizes, is 

observed to lead to a linear increase in the inter-particle 

distance for the aligned MRE when the sample is deliberately 

configured such that the vertical distance between the particles 

is kept constant for all the particle sizes. 
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Introduction 
 

Magnetorheological elastomers (MREs) are composites 

consisting of a polymer matrix filled with micron sized 

magnetizable particles, typically iron particles. Due to their 

strong magnetoelastic coupling properties, these materials 

exhibit field-dependent material properties when under the 

effect of externally applied magnetic field. Specifically, their 

mechanical properties including stiffness and damping 

changes when subjected to an external magnetic field [1], [2]. 

The  capability of MREs to respond rapidly, controllably and 

reversibly to the effect of external magnetic field has been 

found useful for a variety of applications including sensors, 

actuators, adaptive engine mounts, tunable vibration 

absorbers, and vibration isolators [3].  

         As a result, much attention has been focused on 

improving the efficiency of these materials, trying to achieve 

higher tunable modulus amplitude under magnetic field. 

Several factors have been found to significantly influence the 

magnetorheological (MR) effect, such as matrix modulus, 

plasticizers, working modes, magnetic field strength, type, 

concentration and distribution of magnetic particles [4]–[6]. 

Among those, the particle size is also found to be of great 

importance to the MR effect. Using experiment, Lokander et 

al [7], showed that unaligned MRE material with irregularly 

shaped particles with diameters sizes < 60 µm had greater MR 

effect than the same with 3-5µm. Qian et al [5] showed that 

for aligned samples the optimum particle size was ~74 µm 

beyond which the MR effect decreased with increase in 

particles sizes. All these studies showed there was an optimum 

particle size but neither of the studies compared the effect of 

the particles sizes for the unaligned and aligned MRE 

materials.  

        Inspired by the experimental work, we aim to investigate 

the effect of particle sizes on the effective behavior of 

unaligned and aligned MRE based on microscopically 

motivated continuum model. Continuum-based models as used 

by Dorfman and Ogden [8], Kalina et al [9], and Spieler et al 

[10]  are considered as popular tools to understand magneto-

elastic responses of these materials. Here, the local magnetic 

and mechanical fields are resolved explicitly. While for the 

calculation of the effective material behavior of the MRE an 

appropriate homogenization scheme is utilized [10].  Since in 

this modeling strategy each of the constituents is considered 

separately, influences of the microstructure can be taken into 

account. Thus, deformation mechanisms leading to material 

characteristic phenomena such as magnetostriction and the 

magnetorheological effect can be investigated systematically. 

       In this work, FEM methodology is utilized due to its 

capability to take into account different microstructures [9]. In 

particular, the results are evaluated for isotropic and 

anisotropic microstructures, respectively. Assuming the 

sample to have constant particles’ volume fraction and shape, 

the effect of particle sizes on the effective composite behavior 

is determined for the different microstructures. To perform the 
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simulation, commercial finite element analysis (FEA) software 

COMSOL Multiphyics is used as it has the capabilities to 

couple the magnetic and elastic behavior [11].  

 To allow for the coupling of the magnetic and mechanical 

fields in the composite the AC/DC and the structural 

mechanics module in COMSOL Multiphyiscs are used [12]. A 

two- dimensional representative volume element (RVE) is 

developed as depicted in Figure 1. Periodic conditions are 

assigned and the Maxwell stress tensor is introduced to the 

boundaries of the particles in order to couple the mechanical 

and magnetic fields and the macroscopic response of the MRE 

is studied as a function of particles sizes.  

    The paper is organized as follows: In Section 2, the theory 

of numerical simulation in finite deformation [8], [13] is 

briefly discussed. In Section 3, using FEM the RVE models 

developed for numerical simulations and the microstructure of 

the sample are discussed. In Section 4, the results of the 

numerical analysis are presented and discussed. Finally, in 

Section 5 concluding remarks are given. 

Theory 
 

The continuum theory of  magnetoelasticity in magnetic 

elastomer composites has been well developed Danas et al [1], 

Dorfmann and Ogden [8] and Kankanala and Triantafyllidis 

[14]. Therefore, in this section no aim is made to redevelop the 

theory, but to use it to study the magnetic particle sizes 

deformation dependent behavior of the composite material. 

Here, we consider the polymer matrix and the magnetic fillers 

as continuum with distinct materials properties in contrast to 

the phenomenological approaches [8], [14]  where the material 

model is fitted to the experimental data obtained from a 

homogenization.  

Following the basics in continuum mechanics, the deformation 

gradient F and its determinant J are defined as  

        𝑭 =  𝜕𝒙
𝜕𝑿⁄  ,         𝐽 = det 𝑭 > 0                       (1) 

where X and x represent the positions of a typical material 

point in the reference (undeformed) and current (deformed) 

configuration, respectively and J is the Jacobian.  The 

Jacobian is a measure of the materials volume change due to 

deformation.  When a magnetic field is applied to MRE, the 

material deforms, the local deformation can then be 

characterized based on the deformation gradient and the 

Jacobian [15], [16]. Based on the reference configuration 

(Lagrangian description), the strain measure in terms of 

materials coordinates is defined using the symmetric right 

Cauchy Green tensor 𝑪 = 𝑭𝑻𝑭. This should be differentiated 

from that in spatial coordinates (Eulerian description) where 

the strain measure is defined using the symmetric left Cauchy 

Green tensor 𝒃 = 𝑭𝑻𝑭. In this work, a FEM approach that 

uses an Arbitrary Lagrangian-Eulerian (ALE) formulation 

with finite deformation kinematics to account for large 

deformation is used. Thus, for the remainder of the work, the 

discussion of the model will be based on the Lagrangian 

description. 

 

Magnetostatics 

 

Considering static magnetic field, the Maxwell’s equations for 

stationary magnetic field are described by the relations, 

 

∆. 𝑩 = 0,                                                          (2) 

 

∇  ×  𝑯 = 𝑱.                                                     (3) 

 

 Where B is magnetic flux density, H is magnetic field 

strength and J is current density. Across the boundary surface 

the boundary conditions for B and H are given as, 

 

𝒏. [𝑩+ − 𝑩−] = 0 ,  𝒏 × [𝑯+ −  𝑯−] = 0    (4) 

 

Where the square brackets indicate a jump of a quantity across 

the surface and n is the outwards normal to the surface. 

Magnetization M, which is magnetic moments, induced in the 

magnetic material per unit volume can be related to B and H 

by the constitutive relation, 

 

𝑩 =  𝜇0( 𝑯 + 𝑴)                                            (5) 

 

Where 𝜇0 is permeability of free space. In numerical 

simulation, which is the method used in this work, the 

modeling of the magnetic behavior involves choosing the 

magnetic vector potential A as the independent variable in the 

constitutive laws defined above. The independent variable A is 

then related to B by the relation, 

 

𝑩 =  ∇  × 𝑨                                                     (6) 

 

and using the Coulomb gauge transformation which is defined 

by ∆. 𝑨 = 0, the Gauss’s law for magnetism is automatically 

satisfied whereas the Ampere’s circuital law stated in (3) 

remains to be solved. In addition, equations 2 and 6, and the 

coulomb gauge imply the continuity of the magnetic vector 

potential across a boundary surface of discontinuity, hence 

[A]=0. 

 

Constitutive equations  

 

From the basic balance principles of continuum mechanics 

such as the linear momentum and the angular momentum 

balance principle, the equation of mechanical equilibrium is 

given as,  

 

∇. 𝝉 +  𝜌𝒇 = 𝜌�̇�                                               (7) 

 

Where 𝝉 is stress tensor, 𝜌 is density and v is velocity. In the 

stationary case, there is no acceleration and hence the force 

balance equation becomes, 

 

∇. 𝝉 +  𝜌𝒇 = 0                                                  (8) 

 

For the case of coupling magnetic and elastic behavior there 

are different methods of defining the body forces, stresses, and 

traction. The deformation on the material due to magnetic 

field can be incorporated into the force balance equation in 

terms of magnetic force per unit volume fm, 

 

∇. 𝝉 +  𝜌𝒇 +  𝒇𝑚 = 0                                       (9) 

  

Or in terms of total stress tensor T which is considered to be 

the sum of the mechanical and magnetic (Tm) contributions as 

follows, 

 



𝐓 = 𝑻𝑚 +  𝝉                                                       (10) 

 

Hence, the equilibrium mechanical equation can be written as; 

 

∇. 𝐓 +  𝜌𝒇 = 0                                                (11) 

 

In general, the expressions for the total stress tensor depend on 

the type of the constitutive model. They stem from a 

combination of concepts including thermodynamics, 

continuum mechanics, material and electromagnetic field 

theory. A summary of the various forms of constitutive 

equations, traction conditions and body forces for finitely 

strained magnetic elastic composites can be found in 

Kankanala and Triantafyllidis [14] . 

The boundary conditions for total stress tensor at the external 

boundary of the body is given as; 

 

𝐧. 𝐓 = 𝐭                                                            (12) 

 

Where t is traction vector. For a magnetic (nonzero M) elastic 

solid material, the stress tensor is determined based on 

Maxwell stress tensor which is written as 

 

𝑻𝑚 =
1

𝑢0
𝑩 ⋅ 𝑩⊤ − 𝑴𝑩𝑇 − 1

2𝜇0
⁄ (𝑩. 𝑩 − 𝑴. 𝑩)І     (13) 

 

In this work, the Maxwell stress tensor is applied over the 

boundary surface of the magnetic particles in order to 

approximate the magnetomechanical coupling in MREs [12], 

[17]. 

 

Modeling of MRE’s 
 

To simulate the effect of particle sizes on the macroscopic 

behavior of MREs a two-dimensional RVE is developed in 

COMSOL Multiphysics as shown in Figure. 1.  In composite 

materials, a RVE is the smallest volume over which the 

measurements can be made that will yield a value that 

accurately represents the overall macroscopic constitutive 

response.  Since the RVE is usually smaller than the size of 

the sample, the boundary conditions are different from those 

on a macroscopic specimen. Hence, periodic boundary 

conditions (PBC), are often used to simulate the large system 

by modeling a small part that is far from its edge. Since in the 

FEM simulations, PBC are applied to the RVE models it is 

thus required that the RVE have periodic microstructures. To 

satisfy the continuity conditions of stress, the interface 

between every two adjacent RVEs must have the same 

displacement and stress field. For a given average deformation 

gradient F applied to the RVE model, the PBC can be 

represented by the following general format [16] 

 

x (Q1) − x (Q2) = (F − I) [X (Q1) − X (Q2)],        (14) 

 

V (Q1) = −V (Q2),                                    (15) 

 

     where Q1 and Q2 represents the general nodes of the 

opposite adjacent faces of the RVE, I is the identity matrix, V 

is the force applied on the node. Equation (13) represents the 

periodic displacements, while (14) represents the antiperiodic 

traction conditions. 

 

 

 

 

Figure 1. Different boundary conditions defined to the material body 

a) Electromagnetic boundary value problem (BVP) -prescribed 

magnetic vector potential A and current J in material body domain Ω 

b) Coupled magneto—mechanical BVP - prescribed displacements 

u= �̌�  on 𝜕𝛺, surface tractions t and mechanical body force density 

Ρf in Ω c) Schematic diagram of MRE RVE 

 

       To compute the macroscopic magnetic and the coupled 

magneto-mechanical response of the MREs from results 

obtained in an FEM, a computational homogenization method 

is used [10], [18].  Assuming the filler particles to be circular 

in shape and with volume fraction ~20%, the simulation is 

performed for varying mean particles sizes (Փ=5, 10, 20 and 

30 µm). The particles are also assumed to be tightly bonded to 

the matrix, so that both displacement and traction are 

continuous across the interface.  

 

Material properties 

 

Different material properties established from experimental 

data and literature values are assigned to the matrix and the 

filler[17]. The matrix which is modeled as a silicon rubber is 

assumed to follow the Mooney-Rivlin free energy density 

function W, given as.  

 

𝑊 = 𝐶10(�̅�1 + 3) + 𝐶01(�̅�2 + 3) +
𝐾

2
(𝑱 − 1)2        (16) 

  

 Where 𝐶10,  𝐶01 are material constants, K is the bulk modulus 

and J again is the Jacobian,  𝐼1̅ and 𝐼2̅ are the modified 

invariants. Based on literature values [17] the material 

constants  𝐶10 and  𝐶01 are assumed to be 0.4 and 0.1 MPa 

respectively. The initial shear modulus of the matrix can be 

calculated from 𝐺 = 2(𝐶10 +  𝐶01) as 1MPa. The Poisson’s 

ratio υ is assumed to be 0.47 for small compressibility. Using 

shear modulus and the Poisson’s ratio the initial Young 

modulus E and the bulk modulus K can be calculated to be 

2.94 MPa and 16.33MPa, respectively. It is also assumed the 

relative permeability of the matrix is 1. The density of the 

matrix is assumed to be 1250kg/m3. The particles which are 

assumed to be iron (Fe) particles are modeled as linear elastic 

material with young modulus E, υ, and density assumed to be 

210GPa, 0.33 and 7860 kg/m3 respectively. The magnetic 

properties of the Fe particles are defined by the B-H curve 

obtained from the materials library in COMSOL Multiphysics. 

 

     The model is considered as a two-dimensional RVE 

restricted on the left face as shown in Figure 2. The model 

consists of two sections, the composite RVE and of the 

surrounding representing the free space/air region. The basic 

idea behind our modeling is to allow the sample to freely 

deform as expected of MRE materials in the presence of an 

external magnetic field. Thus, a fixed constraint (u=0) where u 



is displacement, is imposed on the left face of the sample 

(Figure. 2) while other boundaries can freely deform. 

   

 

 

 
Figure 2. 2-D model description for the numerical simulation of the 

MRE sample where Jz represents the applied surface current in the z-

coordinate (circle with a dot is out and with a x is into the board) 

 

In the surrounding, the magnetic field depends on the vector 

potential A which is determined from prescribing appropriate 

boundary conditions at the external boundaries (Figure 2). The 

direction of the resulting magnetic field in the surrounding 

space is then parallel along the longer axis (x-axis). Due to the 

large displacements we adopt a moving mesh mode for the 

calculation of the magnetic field. The mesh movement inside 

the internal subdomain and at its boundaries is determined by 

the displacements of the composite due to the applied 

magnetic fields. The mesh is fixed at the air region external 

boundaries allowing smoothing of the deformation of the 

mesh in the surrounding domain toward these boundaries. 

      Surface current (Jz) is applied as depicted in Figure. 2, 

giving rise to a magnetic field aligned with +x-direction. A 

parametric sweep of the surface current is carried out to 

determine the influence of the magnetic flux density on the 

effective deformational behavior of the MRE.  According to 

reported experimental data on MREs large B values are 

needed to effect any significant changes on the MREs, thus 

large surface current is provided in the range of 0 to 8e5A/m 

in step sizes of 5e3A/m for the initial range 0-1e5A/m and step 

sizes of 10e3A/m for the 2e5-8e5A.m leading to large B 

values ~0.8T.  

Results and discussions 
 

Due to the material and geometric nonlinearities, associated 

with these types of materials, convergence is usually very 

challenging in the numerical simulations and a simulation with 

very refined mesh (extra fine, extremely fine) could take a 

while to get completed. Hence, an investigation of the 

accuracy of the physics defined coarse mesh (total number of 

elements being 16856, 1298 in the surrounding and 15558 

elements in the MRE) to the refined mesh (normal and finer) 

with total number of elements being 30912 and 34266 

respectively to predict the response of the RVE models is first 

performed. Triangular elements are used for the meshing of 

both the surrounding and the MRE. The simulation is 

performed for unaligned MRE with mean particle size of 5 um 

and using computational homogenization the effective 

magneto-induced strain (𝜀1̅1) in the direction of the applied 

magnetic field is plotted for the different mesh sizes as shown 

in Figure. 3. From the analysis, the normal mesh size is 

observed to give larger (𝜀1̅1) values as the effective magnetic 

flux density (�̅�)  increases especially to larger values 

compared to the coarse and finer mesh sizes which are 

observed to overlap. This shows that using very refined (finer) 

mesh sizes reduces the accuracy of the response of these 

materials. Since only a small change is observed in the 

compared mesh sizes, the coarse mesh size is selected for the 

rest of the modeling to minimize the simulation time 

especially for the sample with smaller sized particles. 

 
Figure 3. Effective magnetostrictive in the direction of the applied 

magnetics for varying physics defined mesh sizes. 

 

            Փ = 5um                       Փ = 10um                          Փ=20um 

 

Figure 4. Effective magneto – induced strain in unaligned (a) parallel 

to the direction of the applied field (b) transverse to the direction of 

the applied magnetic field.  The deformation of the RVE for different 

particle sizes is as shown in the legend. (The scale factor is 10). 

 

The effect of particle sizes in the parallel (𝜀1̅1) and transverse 

(𝜀2̅2) directions of the applied magnetic fields for the 

unaligned microstructures was determined as shown in Figures 

4 (a) and (b). The dominant mechanism of performance for 

MREs, depends on interaction between neighboring particles 

[19] hence as seen from other scholarly works [20], the 

interparticle distance is a significant parameter to consider 

when evaluating the macroscopic behavior of these materials. 

Noteworthy, the isotropic MREs are not dependent on 

interparticle distance, hence no attention is paid to the distance 

between the particles in these structures. However, for the 

anisotropic microstructures we deliberately configured these 

structures so that the interparticle distance parameter is taken 

into consideration. To compare the results, the 



vertical/horizontal distance parameters a and r (Figure. 5), 

respectively are kept constant for all the particle sizes. Figures 

5 (a) and (b) shows the negative/positive effective magneto-

induced strain for aligned microstructure parallel / transverse 

to the direction of the magnetic field with varying particles 

sizes and the distances a and  𝑟 set to 10 and 4 um 

respectively. 
 

Figure 5. Schematic diagram of the aligned MRE. The geometric 

parameters include, particle diameter d, the vertical distance h and the 

horizontal distance b between two neighboring particles.  

Փ = 5um               Փ = 10um         Փ = 20um           Փ = 30um 

 
Figure 6.  Effective magneto – induced strain in aligned MRE (a) 

parallel to the direction of the applied field (b) transverse to the 

direction of the applied magnetic field.  The deformation of the RVE 

for different particle sizes is as shown in the legend. (The scale factor 

is 10). 

 

     For both unaligned and aligned microstructures, the 

effective magneto-induced strain in the parallel (𝜀1̅1) and 

transverse (𝜀1̅1) direction is observed to increase with increase 

in �̅�  . Furthermore, the particle sizes are seen to have a 

significant effect in the macroscopic response of the 

composite.  More specifically, the 𝜀  ̅ is observed to decrease 

with increase in particles sizes, as the particle surface area 

decreases, and the composite becomes less permeable with 

larger particle distance hence the particles are less magnetized. 

This agrees with experimental observations as seen in the 

scanning electron microscopy (SEM) micrographs of MRE 

samples with different particle sizes [5], [21]. The resulting 

larger area of the elastomer reduces the overall reinforcing 

effect of the mechanically stiffer particles and thus decreased 

deformational effect in the MRE. The effect of linearly 

increasing the particle sizes on the distance of separation 

between the neighboring particles is determined as plotted in 

Figure 7. The results show a linear relationship between the 

particles sizes and the interparticle distance of  

 

 
Figure 7: Variation of interparticle distance with the mean particle 

size. 

 
Figure 8. Effective magneto-induced strain for varying distances 

between neighboring particles for 20um sized particles. 

 

between the particles. That is, a linear increase in the average 

particle size leads to a linear increase in the distance between 

neighboring particles. This agrees with the theoretical 

prediction of the effect of particles sizes on interparticle 

distance of such composites[5], [21], [22].  

Further, keeping the parameter a constant and changing r (2, 4 

and 6um), a study is carried out for the 20um sized particle to 

determine the effect of the distance between particles on the 

𝜀1̅1 as shown in Figure 8.  In general, macroscopic magneto-

induced strain  𝜀1̅1  is observed to increase with increase in the 

distance r between particles. From the analysis the distance 

between neighboring particles is shown to have significant 

influence on the macroscopic response of MREs. 

Conclusion 
 

From the simulation study, we have shown that the size of the 

particles strongly influences the macroscopic magneto-

induced strain in the MRE for both the unaligned and aligned 

particles. The effective magneto-induced strain effect is 

observed to decrease with increase in the average particle 

sizes. Also, increasing the particle sizes is observed to lead to 

a proportional increase in the distance of separation between 



the particles. That is, the larger the particle is, the longer the 

distance of separation between the neighboring particles is in 

the direction of the magnetic field. This agrees with the 

scanning electron microscopy images of MREs as showed by 

Qian et al[5] and  theoretical calculation. Furthermore, the 

distance between the particles is observed to have a significant 

effect in the macroscopic mechanical behavior of MRE. 
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