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Abstract: This paper presents a solution to simulate the 
dielectric relaxation in insulating materials using COMSOL 
Multiphysics in time domain. Indeed, the polarization P in a 
dielectric material may be divided into two parts according to 
the response time, the electronic polarization and the dipolar 
polarization. These two can respectively be regarded as a time 
instantaneous polarization and a time-dependent polarization, 
resulting from the orientation of both different types of 
dipoles. In the “Electric Currents” module, COMSOL 
Multiphysics uses an equation where the polarization is only 
considered as an instantaneous mechanism. However, in many 
cases, taking the time-dependent relaxation into account in 
time domain simulations is necessary. For example, dielectric 
relaxations modify the stress supported by an insulating 
material in electrical engineering or power electronics systems 
during transient phases. In the paper, a description of the 
physical mechanisms will be first presented. Then, the method 
proposed for their model implementation in COMSOL 
Multiphysics will be exposed, using the particular case of the 
relaxation Debye’s model. The time domain parameters of the 
associated model will be identified from dielectric 
spectroscopy measurements. Examples of time domain 
simulation results will be given for a basic capacitor 
configuration under different excitation signals allowing to 
illustrate the proposed simulation method performance and 
interest. 
Keywords: Electric field simulations, Dielectric relaxation, 
Time domain simulation, Insulation system. 

Introduction 

When an external electric field 𝐸"⃗  is applied on a 
dielectric sample, a nonzero macroscopic dipole moment 
appears and the dielectric is polarized under the influence of 
the field 𝐸"⃗ . The mechanism of polarization deals with how a 
molecules or atoms are reacting to the external electric field, 
by forming dipoles able to be oriented. The polarization vector 
𝑃"⃗ 	is the volume density of electric dipole moments. In the 
linear approximation, the polarization of the dielectric sample 
is proportional to the strength of the electric field 𝐸"⃗ . If all the 
polarization are supposed to be  instantaneous and collinear 
with the applied electric field, the relation between 𝑃"⃗ 	 and 𝐸"⃗  
is given by equation (1): 

𝑃"⃗ (𝑡) = 𝜀+𝜒𝐸"⃗ (𝑡) 
 

(1) 

where 𝜀+  is the vacuum permittivity, and 𝜒	 is the 
material susceptibility.  

Electronic polarization, ionic polarization, dipolar 
polarization and interfacial polarization are some important 
types of polarization mechanisms1. When the external applied 
electric field applied for a sufficiently long duration is suddenly 
suppressed, the decay of polarization to zero is not 
instantaneous but takes a finite time. This is the time required 
for the dipoles to recover a random distribution. Similarly, 
following to the sudden application of a direct voltage, it takes 
a finite time interval before the dipole polarization will achieve 
its maximum value2. This phenomenon is described by the 
general term of dielectric relaxations. The relaxation time 𝜏 is 
used to define the time constant of a dielectric relaxation 
dynamics3. As a main reason of the energy losses in insulating 
materials, the study of the dielectric relaxation impact on an 
electrical system behavior is important. 

At the start of the 20th century, Debye3 theorized the 
orientational polarization phenomenon for low pressure gases. 
Assuming a single type of dipoles without interaction between 
them, if a step electric field 𝐸+""""⃗  is applied at an initial time, the 
polarization vector 𝑃"⃗ (𝑡) will evolve in the dielectric material as 
represented on Figure 1, and described by the following 
relation : 

𝑃"⃗ (𝑡) = 𝑃.""""⃗ + 0𝑃1"""⃗ − 𝑃.""""⃗ 3 ∗ 51− 𝑒
89:; (2) 

In fact, this behavior can be separated into two 
distinct phenomena : an instantaneous one, for which 𝑃.""""⃗  is 
defined as the instantaneous polarization, followed by a non-
instantaneous polarization one, with a relaxation time 𝜏 . 
When all the dipoles are oriented, the remaining polarization 
is defined as the static polarization 𝑃1"""⃗ .   

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Application of electric field time 

Di
po

le
 p

ol
ar

iza
tio

n 

Figure 1 . Dynamic polarization for a step of electric field 𝐸+""""⃗  



The applied electric field 𝐸+""""⃗ , using equation (1) and 
the corresponding 𝜒.  and 𝜒1  are infinite and static 
susceptibilities, can be introduced into the equation (2) as 
follows : 

𝑃"⃗ (𝑡) = 𝜀+𝜒.𝐸+""""⃗ + 𝜀+(𝜒1 − 𝜒.)51 − 𝑒
89:;𝐸+""""⃗  (3) 

Based on the definitions of the electric displacement 
𝐷""⃗ = 𝜀+𝐸"⃗ + 𝑃"⃗ = 𝜀+(1 + 𝜒)𝐸"⃗  and of the relative permittivity 
𝜀 = 1 + 𝜒 , 𝐷""⃗ (𝑡) can also be given by the equation : 

𝐷""⃗ (𝑡) = 𝜀+𝜀.𝐸+""""⃗ + 𝜀+(𝜀1 − 𝜀.) 51− 𝑒
89:;𝐸+""""⃗  (4) 

with 𝜀. and 𝜀1	corresponding to the instantaneous 
polarization and the long-term polarization. If 𝜀. , 𝜀1  and 𝜏 are 
independent on the electric field 𝐸+  applied, equation (4) 
corresponds to the step response of a first order linear system. 
Considering any electric field 𝐸"⃗ (𝑡)  and using the Laplace 
transformation in time domain ( L9=𝐹⃗(𝑡)? = 𝐹⃗(𝑠) ) the 
equation (4) can be generalized :  

𝐷""⃗ (𝑠) = 𝜀+𝜀.𝐸"⃗ (𝑠) + 𝜀+
𝜀1 − 𝜀.
1 + 𝜏𝑠 𝐸

"⃗ (𝑠) = 	𝐷."""""⃗ (𝑠) + 𝐷#""""⃗ (𝑠) (5) 

We set: 

𝐷#	"""""⃗ (𝑠) = 𝜀+
𝜀1 − 𝜀.
1 + 𝜏𝑠 𝐸

"⃗ (𝑠) (6) 

The Laplace inverse transform of relations (5) and (6) 
leads to the following equations: 

𝐷""⃗ (𝑡) = 𝜀+𝜀.𝐸"⃗ (𝑡) + 𝐷#	"""""⃗ (𝑡) (7) 

𝐷#	"""""⃗ (𝑡) + 𝜏
𝜕𝐷#	"""""⃗
𝜕𝑡 = 𝜀+	(𝜀1 − 𝜀.)𝐸"⃗ (𝑡) (8) 

Hence, the system consisting in equations (7) and (8) 
is the one to be solved in order to take into account non 
instantaneous polarization in dielectric materials in time 
domain simulation of electrical devices for any electric field 
𝐸"⃗ (t).  

Currently, COMSOL Multiphysics only allows to take 
into account non instantaneous polarization mechanisms in 
the frequency domain by replacing 𝑠 with 𝑖𝜔 in Equation (5), 
can be rewritten:  

𝐷""⃗ (𝑖𝜔)
𝐸"⃗ (𝑖𝜔)

= 𝜀+𝜀. + 𝜀+
𝜀1 − 𝜀.
1 + 𝜏	𝑖𝜔 (9) 

In this case, Debye defined the complex permittivity 
𝜀∗, as a function (10) of the angular frequency as follows : 

𝜀∗(𝑖𝜔) = 𝜀. +
𝜀1 − 𝜀.
1 + 𝑖𝜔𝜏 (10) 

where, 𝜔 is the angular frequency (in rad/s).  
However, the frequency domain calculation only 

allows the users to predict the situation in the steady state of 
an electrical system under sinusoidal excitation (moreover 
requiring a linear behavior of the materials properties). 
Though, overvoltage or overcurrent could appear in operation 
transient phases of the electrical system, which cannot be 

predicted with the frequency domain solver. Especially, 
overvoltage is a critical factor in the design of electrical 
insulating devices for high voltage applications. 

In this paper, we propose a method to be able to take 
into account the non-instantaneous polarization effect based 
on a time domain simulation, using COMSOL Multiphysics tool, 
in the particular case of the relaxation Debye model. Our 
simulations will be carried out with a basic parallel-plane 
capacitor, under sinus and step excitation signals.  

The model and implementation in COMSOL 

In general, the ‘Electric Current’ physics in COMSOL is 
used to compute the electric field, current and potential 
distributions of a configuration (geometry, mesh, boundaries 
conditions etc.). According to the conduction electric current 
due to the charge flow and the displacement current due to 
the rate of change of the electric field, the equation of the 
current in the dielectric medium is the generalized Ohm’s law 
(11) where 𝜎 is the electric conductivity of the medium. 

𝐽(𝑡) = 𝜎𝐸"⃗ (𝑡) +
𝜕𝐷""⃗ (𝑡)
𝜕𝑡 + 𝐽G"""⃗ (𝑡) (11) 

𝐷""⃗ (𝑡) = 𝜀+𝜀𝐸"⃗ (𝑡) (12) 

 But, in order to take account of the phenomenon of 
non-instantaneous Debye type polarization, Debye’s model 
should be solved together with the generalized Ohm’s law by 
replacing the equation (12) by the equations (7) and (8). The 
implementation of the Debye’s equations in time domain 
(‘Mathematics’) will be coupled with the generalized Ohm’s 
law (11) (‘Electric current’).  

The relation of the electric displacement (equation (7)) 
must be formulated in the ‘Charge conservation’ boundary 
condition for the dielectric material with non-instantaneous 
polarization in the model. 

The non-instantaneous electric displacement 𝐷#""""⃗ (𝑡), 
is calculated coupled by the ‘Partial differential equation’ with 
the variable electric field in different directions (equation (8)). 

Finally, the equations (the model) solved in COMSOL 
could be summary by: 

𝐸(𝑡)""""""""⃗ = −𝑔𝑟𝑎𝑑""""""""""⃗ 	𝑉(𝑡) (13) 

𝐽(𝑡)"""""""⃗ = 𝜎𝐸(𝑡)""""""""⃗ +
𝜕𝐷(𝑡)"""""""""⃗
𝜕𝑡 + 𝐽G(𝑡)"""""""""⃗  (14) 

𝐷""⃗ (𝑡) = 𝜀+𝜀.𝐸"⃗ (𝑡) + 𝐷#	"""""⃗ (𝑡) (15) 

𝐷#	"""""⃗ (𝑡) + 𝜏
𝜕𝐷#	"""""⃗
𝜕𝑡 = 𝜀+	(𝜀1 − 𝜀.)𝐸"⃗ (𝑡) (16) 

In the following section, examples of simulations in 
the time domain solving these equations will be presented. A 
first case will allow a comparison with the corresponding 
simulation in frequency domain. In order to do so, it is 
necessary to consider the equivalent complex permittivity, as 
the one obtained from spectroscopy impedance4. The 



Figure 3 : (a) Electric field vs Time simulated in time domain 
using the proposed method calculation (b) The steady state of 
the results in time domain (c) Simulation in frequency domain   

impedance 𝑍NO (17) of a test cell made of a dielectric material 
metallized on both sides is defined as : 

𝑍NO(𝑖𝜔) =
1

𝐶NO(𝑖𝜔)𝑖𝜔
 (17) 

Where the complex capacitance is given by : 

𝐶NO(𝑖𝜔) = 𝜀+𝜀NO(𝑖𝜔)
𝑆
𝑒 (18) 

Where 𝑆 and 𝑒 are the dielectric sample surface area 
and thickness, and 𝜀NO(𝑖𝜔)  is the equivalent complex 
permittivity. The real 𝜀R(𝜔)	and imaginary 𝜀RR(𝜔) parts of this 
complex permittivity, are classically defined by the following 
expression : 

𝜀NO(𝑖𝜔) = 𝜀R(𝜔) − 𝑖𝜀RR(𝜔) 
(19) 

𝜀R(𝜔)and 𝜀RR(𝜔)are the required parameters to be input in 
COMSOL for frequency domain simulation. The relations 
allowing to define these two parameters in function of the 
Debye model parameters and the electric conductivity are :  

𝜀′(ω) = 𝜀. + 	
(𝜀1 − 𝜀.)
1 + 𝜏U𝜔U (20) 

𝜀′′(ω) =
𝜎
𝜔𝜀+

+ 	
𝜏𝜔(𝜀1 − 𝜀.)
1 + 𝜏U𝜔U  (21) 

Simulation examples 

The performance validation of the simulation taking 
into account non instantaneous polarization mechanisms in 
the time domain, by using the proposed method, has been 
made considering a simple parallel plane electrode-capacitor 
structure. Its definition in COMSOL is presented on Figure 2, 
showing the 10 mm-thick dielectric material inserted between 
both top and bottom metallic electrodes, covered by air layers 
(of about 100 mm thick). The width of this structure is 500 mm. 
A current source is supplied to the uncharged capacitor. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The dielectric material properties have been defined 

using 𝜎 , 𝜏 , 𝜀1  and 𝜀.  parameters, assuming a non-
instantaneous polarization behavior according to the Debye’s 
model. In all this section, the parameters  𝜎, 𝜀1  and 𝜀.will be 
given the fixed values presented in Table 1, whereas the time 

constant 𝜏  will be specified for each simulation case. The 
electric field induced in the dielectric material is the simulated 
quantity under study. Several simulation results are presented 
hereafter. 

 
Table 1 . Simulation parameters for the relaxation dielectric medium 

 
Property 𝜎(𝑆/𝑚) 𝜀1  𝜀. 

Value 1*10-12 9 3 
 

a. Steady state results for a sinusoidal current excitation  

In order to compare the proposed method’s results 
with COMSOL’s already allowed results, a sinusoidal current 
excitation has been considered first, with a 0.5 mA-current 
magnitude (𝐼+) and 5 Hz-frequency (𝑓). In this case, the non-
instantaneous polarization can be taken into account by 
performing frequency domain calculation, deriving the real 
𝜀′(𝜔)  and imaginary parts 𝜀′′(𝜔)  values of the complex 
permittivity from equations (20) and (21).  

The result obtained from the time domain simulation 
including our model is presented by Figure 3, which shows the 
electric field time dependence, from the initial transient period 
(after the current supply/application, supposing 𝐼(𝑡) = 𝐼+  at 
𝑡 = 0𝑠), up to the steady state (at long enough times) of the 
electric field time variation. 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Only the steady state electric field characteristics can 

be calculated in the frequency domain Figure 3(c), based on 
the magnitude and the phase of the complex electric field 
𝐸"⃗ (𝑖𝜔) . By comparing both simulation results in the steady 
state Figure 3(b) (c), we could verify that the same electric field 
magnitudes, of 1.19 kV/mm, are well obtained. So this 
comparison attests the successful performance of our method, 

(a) (b) 

(c) 

Figure 2 . The parallel-plane capacitor description in COMSOL 



its validation at steady state for sinusoidal excitation, and its 
interest for obtaining the transient period of the simulated 
system. 

b. Transient state results for step current excitation 

The electric field of the transient phase when a step  
of current source is applied (of 0.5 mA), obtained from the 
COMSOL simulations with different constant times 𝜏 = 5𝑠 , 
𝜏 = 25𝑠 are shown in Figure 4. As reference data, results of 
the simulations which are calculated with 𝜀 = 9 (epsi9) and 
𝜀 = 3 (epsi3) without Debye model are also shown (all the 
polarizations are then regarded as instantaneous polarizations 
and it means 𝜏 = 0𝑠). 

 
Figure 4 . Electric field (step response) vs Time in front of the 
electrode. Blue/green: without Debye Model 𝜀 = 9/3. Black/red: 
with Debye Model 𝜏 = 5/25(𝑠) 
 

The results of the field with the Debye model vary 
between the results of ‘epsi9’ and ‘epsi3’, the Debye model 
describes the processes of the variety of the time dependent 
polarization from 𝑃. to 𝑃1. One can see the influence of the 
time constant 𝜏 on the velocity of the variation of the electric 
field in transient phase. 

 
Figure 5 . Electric field (step response) vs Time in front of the 
electrode with different time constant in Debye model and 
conducivity 

The results with different constant times (𝜏 = 5𝑠, 𝜏 =
25𝑠 ) in Debye model with different conductivities ( 𝜎 =

108_`	𝑆/𝑚, 𝜎 = 	108_U	𝑆/𝑚) show in Figure 5. The transient 
period of a system without Debye model depends on both the 
conductivity and the permittivity of the dielectric material. The 
system with a smaller conductivity needs more time to achieve 
the steady state. The electric field varies faster with a greater 
𝜏  when the step response is just applied, then it becomes 
slower.  

 

c. Transient state results for sinusoidal current excitation 

Figure 6 shows a sinusoidal (𝑓 = 5𝐻𝑧, 50𝐻𝑧) signal is 
applied on the geometry for the simulation. All material 
properties (𝜎, 𝜀1  and 𝜀.) are the same as those in previous 
section (Table 1). 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

As the results of the sinusoidal signal show, the 
maximum value of the electric field (absolute peak value) in 
the transient period is more important than the one in the 
steady state. Based on the simulation results, it was observed 
that the transient phase is dependent on the relation between 
the time constant 𝜏 and the period 𝑇 of the sinusoidal signal 
applied. As long as the time constant 𝜏 ≪ 𝑇, most of the non-
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Figure 6 . Electric field vs Time in front of the electrode with 
different time constants  𝜏 (a) frequency of signal 𝑓 = 5	𝐻𝑧 (b) 
frequency of signal 𝑓 = 50𝐻𝑧 
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instantaneous polarizations (including depolarizations) are 
completed in each period, therefore a significant difference in 
the amplitude could be found with different time constant. 
While these two parameters are in the same order of 
magnitude, the transient period of Debye polarization appears. 
For the time constant 𝜏 = 0.05𝑠 , there is no significant 
transient overvoltage for the 5Hz-excitation in Figure 6(a). 
However, the transient overvoltage appears for the excitation 
of 50Hz in Figure 6(b). 

It should also be noted that the transient phase is also 
influenced by the initial conditions.(not shown here) 

Conclusions 

The electric field is a key parameter to control for the 
development of higher voltage electrical insulation devices. 
The standard simulation method consists in solving the 
Poisson's equation, the generalized Ohm's law and charge 
conservation in the time domain with the material parameters 
i.e. electrical conductivity and relative permittivity, or in the 
frequency domain with complex permittivity. However, all 
polarizations are considered as instantaneous in COMSOL 
Multiphysics in the time domain calculation. In the frequency 
domain, non-instantaneous polarizations are considered but 
only for the steady state and the sinusoidal excitation. 

In this article, we propose a solution to take into 
account the non-instantaneous polarization which can be 
applied for all types of excitation (sinus, step, square etc.). The 
basic geometry used allowed to prove the concept through a 
simple example. The steady-state results for our model when 
sinusoidal excitation is applied are compared with the results 
obtained by COMSOL in the frequency domain computation. 
This model can be easily integrated in more complex 3D 
geometries with several stacked dielectric materials and 
whatever the type of excitation. 

The different parameters introduced by the Debye 
model (𝜏 , 𝜀.  , 𝜀1 ), can be easily identified from temporal 
measurements6 or from more commonly by impedance 
spectroscopy tests. 

Here, we have introduced the Debye model in the 
computation, because it is the most basic model to describe 
dielectric relaxation. Other models can be integrated such as 
the Cole-Cole5, Cole-Davidson or Havriliak-Negami models, 
even if their implementation in time domain simulations will 
not be direct because of the presence of non-integer time 
derivatives6. 
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