Scopri come la simulazione multifisica viene utilizzata per ricerca e sviluppo
In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.
Visualizza gli articoli presentati alla COMSOL Conference 2020
引言: 对于微流控分选芯片而言,分支出口的位置、宽度等几何参数会直接影响到粒子分选精度与回收效率。但是,遗憾的是,对于流道各分支出口位置的高效设计方法却鲜有报道。当前的设计方法主要是对每一种目标粒子直接进行轨迹仿真[1~7]。但这种方法的运算成本巨大,如果粒子分散体系涉及到的粒径种类繁多且流道结构复杂,那么对每种粒径都进行仿真分析将会使得计算量与计算精度之间的矛盾愈加尖锐;而且,每引入一种没有被仿真研究过的粒径,都要对其重新进行仿真运算,运算成本巨大[8~10]。 据此,本文提出了一种结合有限元分析仿真与系统辨识方法的粒子出射位置预测方法 ... Per saperne di più
微纳米马达是一种能将周围环境的能量转化为自身自主运动的新型智能仿生材料,其在药物的运输与释放,低维材料的合成以及软物质研究中有着重要的应用[1]。基于自电泳的双金属棒马达是研究时间最长的一类马达,它有着与自然界中类似的自组装和群体行为的特性[2]。但是其运动机理复杂且涉及到多个物理场的紧密耦合,这就为其进一步的研究和应用带来了一定的困难。 COMSOL Multiphysics® 可以方便地进行多物理场的模拟。图(1)展示了双金属棒的自电泳机理, 由于棒两端的化学反应造成了带电离子浓度的分布不均匀,进而产生自生电场驱动马达运动。其中传质过程 ... Per saperne di più
为了不断地增加磁存储密度,机械硬盘中磁头和盘片之间的间隙,即飞高,已经减小到了 10nm 以下,以比特磁记录技术(BPM)和热辅助磁记录技术(HAMR)为代表的新兴技术不断涌现,给磁头磁盘界面的超薄气体润滑特性研究提出了新的挑战。 COMSOL Multiphysics® 的使用:由于在超薄气体润滑领域,连续介质模型已经不再适用,控制方程为玻尔兹曼方程。本文以 F-K 模型为控制方程,此模型是在线性玻尔兹曼方程和 BGK 方程基础上结合流量连续条件建立的修正雷诺方程。我们使用了 COMSOL Multiphysics® 中的 PDE 接口进行了自定义修正雷诺方程的建模 ... Per saperne di più