Scopri come la simulazione multifisica viene utilizzata per ricerca e sviluppo
In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.
Visualizza gli articoli presentati alla COMSOL Conference 2020
Porous media fluid dynamic modeling has been widely explored and utilized in many academic and industrial applications. Cross flow filtration being one attractive application, whereas the fluid and filtrate flow parallel the porous media, and thereby induce shearing stress along the ... Per saperne di più
Metamaterials are a new class of artificial materials, which possess various unusual properties. One of these properties is a negative index of refraction produced by setting both the dielectric permittivity ε and the magnetic permeability μ of the material less than zero. Unique ... Per saperne di più
Computational models of biological systems are becoming more and more common in medical research areas. Evidence of this can be found by examining the number of articles containing the term “finite element” in the expansive National Institutes of Health (NIH) digital research archive ... Per saperne di più
Finite element models using COMSOL Multiphysics and MATLAB were developed to solve the problem of stress distribution interior homogeneous, isotropic, incompressible elastic solid material under known vertical external compression with a rectangular contact surface. Moreover, comparison ... Per saperne di più
Increasing attention has been paid to application of the quartz crystal microbalance with dissipation (QCM-D) sensor for monitoring biomolecular interactions. This paper focuses on a practical application of protein-protein binding affinity measurement at low concentrations and minimal ... Per saperne di più
Heat conduction through a slab, 0 ≤ x ≤ W is one dimensional. However, if one of the edges, say x=0, is rough the conduction will be two dimensional. The two dimensionality varies with the correlation length with a maximum at a length approximately 10% of the slab width. ... Per saperne di più
This paper develops a computational model for determining the total damping coefficient for a unit cell of a MEMS microscale device containing a repetitive pattern of holes. The basic cell of the microstructure is approximated by an axi-symmetric domain and the velocity and pressure ... Per saperne di più
A Finite element model of plasma sprayed TBC’s was developed to estimate the stress induced by thermal cycling experiments. A heat transfer analysis was performed to evaluate the temperature distribution on the specimen during the cooling under an impinging air jet; temperature ... Per saperne di più
To assess the importance of assembly discontinuity factors (ADF), a highly heterogeneous reactor core was simulated using a COMSOL model in which ADF are not used. The resulting errors in assembly powers were found to be unacceptably high. This indicates that for highly heterogeneous ... Per saperne di più
This work describes a way to apply 3D Finite Element Analysis (FEA) to the thermal design of power electronic modules using simplified geometry models of the system components. The method here presented can overcome the problem of solving equation systems with a very high number of ... Per saperne di più