Scopri come la simulazione multifisica viene utilizzata per ricerca e sviluppo
In questa sezione troverete i lavori presentati alle Conferenze mondiali COMSOL. Le presentazioni descrivono ricerche e prodotti innovativi progettati con COMSOL Multiphysics da colleghi di tutto il mondo. I temi delle ricerche presentate abbracciano un'ampia gamma di settori produttivi e aree applicative, in ambito elettrico, meccanico, fluidodinamico e chimico. Lo strumento di Ricerca Rapida vi permetterà di trovare le presentazioni che si riferiscono all'area di vostro interesse.
Visualizza gli articoli presentati alla COMSOL Conference 2020
Electrowetting on Dielectric (EWOD) is a versatile tool for performing basic operations in Digital Microfluidic Systems. In EWOD, surface tension between a liquid droplet and solid substrate is modulated by applying voltage to an electrode and a hydrophobic surface is transformed into a ... Per saperne di più
Organ-on-a-chip microdevices combine microfluidics, MEMS, and biotechnology techniques to mimic the multicellular architectures, tissue-tissue interfaces, physicochemical microenvironments, and vascular perfusion of the body.[1] Such devices are being developed to provide better levels ... Per saperne di più
Predicting and controlling the formation of droplets from a liquid jet is a critical problem in a variety of applications ranging from fuel injection to paint sprays. It is known that liquid droplets subjected to an electric field acquire a net electrostatic charge via induction, and ... Per saperne di più
A two-dimensional numerical simulation study has been performed to model an electrohydrodynamic (EHD) micropump. The emphasis of this study was on simulating the effect of the different geometric design parameters on the micropump pressure head and volume flow rate. The simulated design ... Per saperne di più
Introduction - The ability to achieve rapid and homogeneous mixing at microscales is one of the essential requirements for various lab-on-a-chip applications [1]. The flow at microscales is characterized by low Reynolds number, resulting in laminar flow patterns. Thus, the mixing at ... Per saperne di più
Introduction The COMSOL Multiphysics® software and its CFD Module have a physics interface for solving Laminar Two-Phase Flow problems using the Level Set method (1). This paper discusses how the tool may be used with more than two phases when the flow is laminar. It then introduces a ... Per saperne di più
INTRODUCTION The dynamic behavior of droplet impingement on a solid surface is important to many engineering applications, such as rain drops on automobile windshields, inkjet deposition and metal deposition in manufacturing processes, spray cooling of electronics, and spray coating for ... Per saperne di più
Introduction - The ability to precisely manipulate fluid and particles at microscales is one of the essential requirements for various lab-on-a-chip applications such as drug diagnostics, chemical synthesis etc.[1] Recently, the nonlinear interaction of surface acoustic waves (SAW) with ... Per saperne di più
Introduction: Developments intended to improve system efficiency and reliability for water and carbon dioxide separation systems to be used on crewed vehicles combine sub-scale systems testing and multi-physics simulations. This paper describes the development of simulations in COMSOL ... Per saperne di più
A similarity solution to Taylor's paint scraper problem for the flow of a non-Newtonian power-law fluid is presented. A shooting method numerical solution agrees with the results found for Newtonian fluids and is able to capture both shear-thinning and shear-thickening fluids. ... Per saperne di più